Variational Vibrational States of Methanol (12D)
Full-dimensional (12D) vibrational states of the methanol molecule (CH3OH) have been computed using the GENIUSH-Smolyak approach and the potential energy surface from Qu and Bowman (2013). All vibrational energies are converged better than 0.5 cm–1 with respect to the basis and grid size up to the f...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2024-08, Vol.20 (18), p.8100-8117 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8117 |
---|---|
container_issue | 18 |
container_start_page | 8100 |
container_title | Journal of chemical theory and computation |
container_volume | 20 |
creator | Sunaga, Ayaki Avila, Gustavo Mátyus, Edit |
description | Full-dimensional (12D) vibrational states of the methanol molecule (CH3OH) have been computed using the GENIUSH-Smolyak approach and the potential energy surface from Qu and Bowman (2013). All vibrational energies are converged better than 0.5 cm–1 with respect to the basis and grid size up to the first overtone of the CO stretch, ca. 2000 cm–1 beyond the zero-point vibrational energy. About 70 torsion-vibration states are reported and assigned. The computed vibrational energies agree with the available experimental data within less than a few cm–1 in most cases, which confirms the good accuracy of the potential energy surface. The computations are carried out using curvilinear normal coordinates with the option of path-following coefficients, which minimize the coupling of the small- and large-amplitude motions. It is important to ensure tight numerical fulfillment of the C 3v(M) molecular symmetry for every geometry and coefficient set used to define the curvilinear normal coordinates along the torsional coordinate to obtain a faithful description of degeneracy in this floppy system. The reported values may provide a computational reference for fundamental spectroscopy, astrochemistry, and for the search of the proton-to-electron mass ratio variation using the methanol molecule. |
doi_str_mv | 10.1021/acs.jctc.4c00647 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3099803169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099803169</sourcerecordid><originalsourceid>FETCH-LOGICAL-a247t-d260a304ad5eed35616d1623e38c90f458fe7c5903694b920ff34da08dc865043</originalsourceid><addsrcrecordid>eNp1kDlPAzEQRi0EIiHQU6GVaILEhvGxzrpE4ZSCKIC0luNDbLSbDba34N_jkKNAopop3veN5iF0jmGEgeAbpcNooaMeMQ3A2fgA9XHBRC444Yf7HZc9dBLCAoBSRugx6lFBMOUg-ghmylcqVu1S1dmsmvvd_hZVtCFrXfZi46datnU2xOTu6hQdOVUHe7adA_TxcP8-ecqnr4_Pk9tprggbx9wQDooCU6aw1tCCY24wJ9TSUgtwrCidHetCAOWCzQUB5ygzCkqjS14AowM03PSufPvV2RBlUwVt61otbdsFSUGIEijmIqGXf9BF2_n0RKIwJglJChIFG0r7NgRvnVz5qlH-W2KQa5sy2ZRrm3JrM0UutsXdvLFmH9jpS8D1BviN7o7-2_cDBYp9Bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112169618</pqid></control><display><type>article</type><title>Variational Vibrational States of Methanol (12D)</title><source>American Chemical Society Journals</source><creator>Sunaga, Ayaki ; Avila, Gustavo ; Mátyus, Edit</creator><creatorcontrib>Sunaga, Ayaki ; Avila, Gustavo ; Mátyus, Edit</creatorcontrib><description>Full-dimensional (12D) vibrational states of the methanol molecule (CH3OH) have been computed using the GENIUSH-Smolyak approach and the potential energy surface from Qu and Bowman (2013). All vibrational energies are converged better than 0.5 cm–1 with respect to the basis and grid size up to the first overtone of the CO stretch, ca. 2000 cm–1 beyond the zero-point vibrational energy. About 70 torsion-vibration states are reported and assigned. The computed vibrational energies agree with the available experimental data within less than a few cm–1 in most cases, which confirms the good accuracy of the potential energy surface. The computations are carried out using curvilinear normal coordinates with the option of path-following coefficients, which minimize the coupling of the small- and large-amplitude motions. It is important to ensure tight numerical fulfillment of the C 3v(M) molecular symmetry for every geometry and coefficient set used to define the curvilinear normal coordinates along the torsional coordinate to obtain a faithful description of degeneracy in this floppy system. The reported values may provide a computational reference for fundamental spectroscopy, astrochemistry, and for the search of the proton-to-electron mass ratio variation using the methanol molecule.</description><identifier>ISSN: 1549-9618</identifier><identifier>ISSN: 1549-9626</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.4c00647</identifier><identifier>PMID: 39213609</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Astrochemistry ; Computation ; Electron mass ; Methanol ; Potential energy ; Spectroscopy and Excited States ; Vibrational states</subject><ispartof>Journal of chemical theory and computation, 2024-08, Vol.20 (18), p.8100-8117</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 24, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a247t-d260a304ad5eed35616d1623e38c90f458fe7c5903694b920ff34da08dc865043</cites><orcidid>0000-0001-7298-1707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.4c00647$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.4c00647$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39213609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sunaga, Ayaki</creatorcontrib><creatorcontrib>Avila, Gustavo</creatorcontrib><creatorcontrib>Mátyus, Edit</creatorcontrib><title>Variational Vibrational States of Methanol (12D)</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Full-dimensional (12D) vibrational states of the methanol molecule (CH3OH) have been computed using the GENIUSH-Smolyak approach and the potential energy surface from Qu and Bowman (2013). All vibrational energies are converged better than 0.5 cm–1 with respect to the basis and grid size up to the first overtone of the CO stretch, ca. 2000 cm–1 beyond the zero-point vibrational energy. About 70 torsion-vibration states are reported and assigned. The computed vibrational energies agree with the available experimental data within less than a few cm–1 in most cases, which confirms the good accuracy of the potential energy surface. The computations are carried out using curvilinear normal coordinates with the option of path-following coefficients, which minimize the coupling of the small- and large-amplitude motions. It is important to ensure tight numerical fulfillment of the C 3v(M) molecular symmetry for every geometry and coefficient set used to define the curvilinear normal coordinates along the torsional coordinate to obtain a faithful description of degeneracy in this floppy system. The reported values may provide a computational reference for fundamental spectroscopy, astrochemistry, and for the search of the proton-to-electron mass ratio variation using the methanol molecule.</description><subject>Astrochemistry</subject><subject>Computation</subject><subject>Electron mass</subject><subject>Methanol</subject><subject>Potential energy</subject><subject>Spectroscopy and Excited States</subject><subject>Vibrational states</subject><issn>1549-9618</issn><issn>1549-9626</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDlPAzEQRi0EIiHQU6GVaILEhvGxzrpE4ZSCKIC0luNDbLSbDba34N_jkKNAopop3veN5iF0jmGEgeAbpcNooaMeMQ3A2fgA9XHBRC444Yf7HZc9dBLCAoBSRugx6lFBMOUg-ghmylcqVu1S1dmsmvvd_hZVtCFrXfZi46datnU2xOTu6hQdOVUHe7adA_TxcP8-ecqnr4_Pk9tprggbx9wQDooCU6aw1tCCY24wJ9TSUgtwrCidHetCAOWCzQUB5ygzCkqjS14AowM03PSufPvV2RBlUwVt61otbdsFSUGIEijmIqGXf9BF2_n0RKIwJglJChIFG0r7NgRvnVz5qlH-W2KQa5sy2ZRrm3JrM0UutsXdvLFmH9jpS8D1BviN7o7-2_cDBYp9Bw</recordid><startdate>20240830</startdate><enddate>20240830</enddate><creator>Sunaga, Ayaki</creator><creator>Avila, Gustavo</creator><creator>Mátyus, Edit</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7298-1707</orcidid></search><sort><creationdate>20240830</creationdate><title>Variational Vibrational States of Methanol (12D)</title><author>Sunaga, Ayaki ; Avila, Gustavo ; Mátyus, Edit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a247t-d260a304ad5eed35616d1623e38c90f458fe7c5903694b920ff34da08dc865043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astrochemistry</topic><topic>Computation</topic><topic>Electron mass</topic><topic>Methanol</topic><topic>Potential energy</topic><topic>Spectroscopy and Excited States</topic><topic>Vibrational states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sunaga, Ayaki</creatorcontrib><creatorcontrib>Avila, Gustavo</creatorcontrib><creatorcontrib>Mátyus, Edit</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sunaga, Ayaki</au><au>Avila, Gustavo</au><au>Mátyus, Edit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational Vibrational States of Methanol (12D)</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2024-08-30</date><risdate>2024</risdate><volume>20</volume><issue>18</issue><spage>8100</spage><epage>8117</epage><pages>8100-8117</pages><issn>1549-9618</issn><issn>1549-9626</issn><eissn>1549-9626</eissn><abstract>Full-dimensional (12D) vibrational states of the methanol molecule (CH3OH) have been computed using the GENIUSH-Smolyak approach and the potential energy surface from Qu and Bowman (2013). All vibrational energies are converged better than 0.5 cm–1 with respect to the basis and grid size up to the first overtone of the CO stretch, ca. 2000 cm–1 beyond the zero-point vibrational energy. About 70 torsion-vibration states are reported and assigned. The computed vibrational energies agree with the available experimental data within less than a few cm–1 in most cases, which confirms the good accuracy of the potential energy surface. The computations are carried out using curvilinear normal coordinates with the option of path-following coefficients, which minimize the coupling of the small- and large-amplitude motions. It is important to ensure tight numerical fulfillment of the C 3v(M) molecular symmetry for every geometry and coefficient set used to define the curvilinear normal coordinates along the torsional coordinate to obtain a faithful description of degeneracy in this floppy system. The reported values may provide a computational reference for fundamental spectroscopy, astrochemistry, and for the search of the proton-to-electron mass ratio variation using the methanol molecule.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39213609</pmid><doi>10.1021/acs.jctc.4c00647</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7298-1707</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2024-08, Vol.20 (18), p.8100-8117 |
issn | 1549-9618 1549-9626 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_3099803169 |
source | American Chemical Society Journals |
subjects | Astrochemistry Computation Electron mass Methanol Potential energy Spectroscopy and Excited States Vibrational states |
title | Variational Vibrational States of Methanol (12D) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A41%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20Vibrational%20States%20of%20Methanol%20(12D)&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Sunaga,%20Ayaki&rft.date=2024-08-30&rft.volume=20&rft.issue=18&rft.spage=8100&rft.epage=8117&rft.pages=8100-8117&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.4c00647&rft_dat=%3Cproquest_cross%3E3099803169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112169618&rft_id=info:pmid/39213609&rfr_iscdi=true |