Variational Vibrational States of Methanol (12D)

Full-dimensional (12D) vibrational states of the methanol molecule (CH3OH) have been computed using the GENIUSH-Smolyak approach and the potential energy surface from Qu and Bowman (2013). All vibrational energies are converged better than 0.5 cm–1 with respect to the basis and grid size up to the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2024-08, Vol.20 (18), p.8100-8117
Hauptverfasser: Sunaga, Ayaki, Avila, Gustavo, Mátyus, Edit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8117
container_issue 18
container_start_page 8100
container_title Journal of chemical theory and computation
container_volume 20
creator Sunaga, Ayaki
Avila, Gustavo
Mátyus, Edit
description Full-dimensional (12D) vibrational states of the methanol molecule (CH3OH) have been computed using the GENIUSH-Smolyak approach and the potential energy surface from Qu and Bowman (2013). All vibrational energies are converged better than 0.5 cm–1 with respect to the basis and grid size up to the first overtone of the CO stretch, ca. 2000 cm–1 beyond the zero-point vibrational energy. About 70 torsion-vibration states are reported and assigned. The computed vibrational energies agree with the available experimental data within less than a few cm–1 in most cases, which confirms the good accuracy of the potential energy surface. The computations are carried out using curvilinear normal coordinates with the option of path-following coefficients, which minimize the coupling of the small- and large-amplitude motions. It is important to ensure tight numerical fulfillment of the C 3v(M) molecular symmetry for every geometry and coefficient set used to define the curvilinear normal coordinates along the torsional coordinate to obtain a faithful description of degeneracy in this floppy system. The reported values may provide a computational reference for fundamental spectroscopy, astrochemistry, and for the search of the proton-to-electron mass ratio variation using the methanol molecule.
doi_str_mv 10.1021/acs.jctc.4c00647
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3099803169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099803169</sourcerecordid><originalsourceid>FETCH-LOGICAL-a247t-d260a304ad5eed35616d1623e38c90f458fe7c5903694b920ff34da08dc865043</originalsourceid><addsrcrecordid>eNp1kDlPAzEQRi0EIiHQU6GVaILEhvGxzrpE4ZSCKIC0luNDbLSbDba34N_jkKNAopop3veN5iF0jmGEgeAbpcNooaMeMQ3A2fgA9XHBRC444Yf7HZc9dBLCAoBSRugx6lFBMOUg-ghmylcqVu1S1dmsmvvd_hZVtCFrXfZi46datnU2xOTu6hQdOVUHe7adA_TxcP8-ecqnr4_Pk9tprggbx9wQDooCU6aw1tCCY24wJ9TSUgtwrCidHetCAOWCzQUB5ygzCkqjS14AowM03PSufPvV2RBlUwVt61otbdsFSUGIEijmIqGXf9BF2_n0RKIwJglJChIFG0r7NgRvnVz5qlH-W2KQa5sy2ZRrm3JrM0UutsXdvLFmH9jpS8D1BviN7o7-2_cDBYp9Bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112169618</pqid></control><display><type>article</type><title>Variational Vibrational States of Methanol (12D)</title><source>American Chemical Society Journals</source><creator>Sunaga, Ayaki ; Avila, Gustavo ; Mátyus, Edit</creator><creatorcontrib>Sunaga, Ayaki ; Avila, Gustavo ; Mátyus, Edit</creatorcontrib><description>Full-dimensional (12D) vibrational states of the methanol molecule (CH3OH) have been computed using the GENIUSH-Smolyak approach and the potential energy surface from Qu and Bowman (2013). All vibrational energies are converged better than 0.5 cm–1 with respect to the basis and grid size up to the first overtone of the CO stretch, ca. 2000 cm–1 beyond the zero-point vibrational energy. About 70 torsion-vibration states are reported and assigned. The computed vibrational energies agree with the available experimental data within less than a few cm–1 in most cases, which confirms the good accuracy of the potential energy surface. The computations are carried out using curvilinear normal coordinates with the option of path-following coefficients, which minimize the coupling of the small- and large-amplitude motions. It is important to ensure tight numerical fulfillment of the C 3v(M) molecular symmetry for every geometry and coefficient set used to define the curvilinear normal coordinates along the torsional coordinate to obtain a faithful description of degeneracy in this floppy system. The reported values may provide a computational reference for fundamental spectroscopy, astrochemistry, and for the search of the proton-to-electron mass ratio variation using the methanol molecule.</description><identifier>ISSN: 1549-9618</identifier><identifier>ISSN: 1549-9626</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.4c00647</identifier><identifier>PMID: 39213609</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Astrochemistry ; Computation ; Electron mass ; Methanol ; Potential energy ; Spectroscopy and Excited States ; Vibrational states</subject><ispartof>Journal of chemical theory and computation, 2024-08, Vol.20 (18), p.8100-8117</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 24, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a247t-d260a304ad5eed35616d1623e38c90f458fe7c5903694b920ff34da08dc865043</cites><orcidid>0000-0001-7298-1707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.4c00647$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.4c00647$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39213609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sunaga, Ayaki</creatorcontrib><creatorcontrib>Avila, Gustavo</creatorcontrib><creatorcontrib>Mátyus, Edit</creatorcontrib><title>Variational Vibrational States of Methanol (12D)</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Full-dimensional (12D) vibrational states of the methanol molecule (CH3OH) have been computed using the GENIUSH-Smolyak approach and the potential energy surface from Qu and Bowman (2013). All vibrational energies are converged better than 0.5 cm–1 with respect to the basis and grid size up to the first overtone of the CO stretch, ca. 2000 cm–1 beyond the zero-point vibrational energy. About 70 torsion-vibration states are reported and assigned. The computed vibrational energies agree with the available experimental data within less than a few cm–1 in most cases, which confirms the good accuracy of the potential energy surface. The computations are carried out using curvilinear normal coordinates with the option of path-following coefficients, which minimize the coupling of the small- and large-amplitude motions. It is important to ensure tight numerical fulfillment of the C 3v(M) molecular symmetry for every geometry and coefficient set used to define the curvilinear normal coordinates along the torsional coordinate to obtain a faithful description of degeneracy in this floppy system. The reported values may provide a computational reference for fundamental spectroscopy, astrochemistry, and for the search of the proton-to-electron mass ratio variation using the methanol molecule.</description><subject>Astrochemistry</subject><subject>Computation</subject><subject>Electron mass</subject><subject>Methanol</subject><subject>Potential energy</subject><subject>Spectroscopy and Excited States</subject><subject>Vibrational states</subject><issn>1549-9618</issn><issn>1549-9626</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDlPAzEQRi0EIiHQU6GVaILEhvGxzrpE4ZSCKIC0luNDbLSbDba34N_jkKNAopop3veN5iF0jmGEgeAbpcNooaMeMQ3A2fgA9XHBRC444Yf7HZc9dBLCAoBSRugx6lFBMOUg-ghmylcqVu1S1dmsmvvd_hZVtCFrXfZi46datnU2xOTu6hQdOVUHe7adA_TxcP8-ecqnr4_Pk9tprggbx9wQDooCU6aw1tCCY24wJ9TSUgtwrCidHetCAOWCzQUB5ygzCkqjS14AowM03PSufPvV2RBlUwVt61otbdsFSUGIEijmIqGXf9BF2_n0RKIwJglJChIFG0r7NgRvnVz5qlH-W2KQa5sy2ZRrm3JrM0UutsXdvLFmH9jpS8D1BviN7o7-2_cDBYp9Bw</recordid><startdate>20240830</startdate><enddate>20240830</enddate><creator>Sunaga, Ayaki</creator><creator>Avila, Gustavo</creator><creator>Mátyus, Edit</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7298-1707</orcidid></search><sort><creationdate>20240830</creationdate><title>Variational Vibrational States of Methanol (12D)</title><author>Sunaga, Ayaki ; Avila, Gustavo ; Mátyus, Edit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a247t-d260a304ad5eed35616d1623e38c90f458fe7c5903694b920ff34da08dc865043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astrochemistry</topic><topic>Computation</topic><topic>Electron mass</topic><topic>Methanol</topic><topic>Potential energy</topic><topic>Spectroscopy and Excited States</topic><topic>Vibrational states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sunaga, Ayaki</creatorcontrib><creatorcontrib>Avila, Gustavo</creatorcontrib><creatorcontrib>Mátyus, Edit</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sunaga, Ayaki</au><au>Avila, Gustavo</au><au>Mátyus, Edit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational Vibrational States of Methanol (12D)</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2024-08-30</date><risdate>2024</risdate><volume>20</volume><issue>18</issue><spage>8100</spage><epage>8117</epage><pages>8100-8117</pages><issn>1549-9618</issn><issn>1549-9626</issn><eissn>1549-9626</eissn><abstract>Full-dimensional (12D) vibrational states of the methanol molecule (CH3OH) have been computed using the GENIUSH-Smolyak approach and the potential energy surface from Qu and Bowman (2013). All vibrational energies are converged better than 0.5 cm–1 with respect to the basis and grid size up to the first overtone of the CO stretch, ca. 2000 cm–1 beyond the zero-point vibrational energy. About 70 torsion-vibration states are reported and assigned. The computed vibrational energies agree with the available experimental data within less than a few cm–1 in most cases, which confirms the good accuracy of the potential energy surface. The computations are carried out using curvilinear normal coordinates with the option of path-following coefficients, which minimize the coupling of the small- and large-amplitude motions. It is important to ensure tight numerical fulfillment of the C 3v(M) molecular symmetry for every geometry and coefficient set used to define the curvilinear normal coordinates along the torsional coordinate to obtain a faithful description of degeneracy in this floppy system. The reported values may provide a computational reference for fundamental spectroscopy, astrochemistry, and for the search of the proton-to-electron mass ratio variation using the methanol molecule.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39213609</pmid><doi>10.1021/acs.jctc.4c00647</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7298-1707</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2024-08, Vol.20 (18), p.8100-8117
issn 1549-9618
1549-9626
1549-9626
language eng
recordid cdi_proquest_miscellaneous_3099803169
source American Chemical Society Journals
subjects Astrochemistry
Computation
Electron mass
Methanol
Potential energy
Spectroscopy and Excited States
Vibrational states
title Variational Vibrational States of Methanol (12D)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A41%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20Vibrational%20States%20of%20Methanol%20(12D)&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Sunaga,%20Ayaki&rft.date=2024-08-30&rft.volume=20&rft.issue=18&rft.spage=8100&rft.epage=8117&rft.pages=8100-8117&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.4c00647&rft_dat=%3Cproquest_cross%3E3099803169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112169618&rft_id=info:pmid/39213609&rfr_iscdi=true