Silicon–organic pigment material hybrids for photovoltaic application
Hybrid materials of silicon and organic dyes have been investigated for possible application as photovoltaic material in thin film solar cells. High conversion efficiency is expected from the combination of the advantages of organic dyes for light absorption and those of silicon for charge carrier s...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2007-12, Vol.91 (20), p.1873-1886 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1886 |
---|---|
container_issue | 20 |
container_start_page | 1873 |
container_title | Solar energy materials and solar cells |
container_volume | 91 |
creator | Mayer, T. Weiler, U. Kelting, C. Schlettwein, D. Makarov, S. Wöhrle, D. Abdallah, O. Kunst, M. Jaegermann, W. |
description | Hybrid materials of silicon and organic dyes have been investigated for possible application as photovoltaic material in thin film solar cells. High conversion efficiency is expected from the combination of the advantages of organic dyes for light absorption and those of silicon for charge carrier separation and transport. Low temperature remote hot wire chemical vapor deposition (HWCVD) was developed for microcrystalline silicon (μc-Si) deposition using SiH
4/H
2 mixtures. As model dyes zinc phthalocyanines have been evaporated from Knudsen type sources. Layers of dye on μc-Si and μc-Si on dye films, and composites of simultaneously and sequentially deposited Si and dye have been prepared and characterized. Raman, absorption, and photoemission spectroscopy prove the stability of the organic molecules against the rough HWCVD-Si process. Transient microwave conductivity (TRMC) indicates good electronic quality of the μc-Si matrix. Energy transfer from dye to Si is indicated indirectly by luminescence and directly by photoconductivity measurements. F
x
ZnPc pigments with
x=0,4,8,16 have been synthesized, purified and adsorbed onto H-terminated Si(1
1
1) for electronic state line up determination by photoelectron spectroscopy. For
x=4 and 8 the dye frontier orbitals line up symmetrically versus the Si energy gap offering similar energetic driving forces for electron and hole injection, which is considered optimum for bulk sensitization and indicates a direction to improve the optoelectronic coupling of the organic dyes to silicon. |
doi_str_mv | 10.1016/j.solmat.2007.07.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30993231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024807002553</els_id><sourcerecordid>30993231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-aab320bf8c6e58a7ce5dce59312275564f44f64a2b7ac72568d259f48e54d2f43</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gYtudNeaJulPNoIMOgoDLtR1uE2TmQxtU5PMwOx8B9_QJ7GlA-6Ec7mbc77LPQhdpzhJcZrfbRNvmxZCQjAuklGYnaBZWhY8ppSXp2iGOSliTFh5ji6832KMSU7ZDC3fTGOk7X6-vq1bQ2dk1Jt1q7oQDUDlDDTR5lA5U_tIWxf1Gxvs3jYBBif0_RCGYGx3ic40NF5dHfccfTw9vi-e49Xr8mXxsIolw2WIASpKcKVLmaushEKqrB6G05SQIstyphnTOQNSFSALkuVlTTKuWakyVhPN6BzdTtze2c-d8kG0xkvVNNApu_OCYs4poelgZJNROuu9U1r0zrTgDiLFYmxNbMXUmhhbE6PwyL858sFLaLSDThr_l-Vpxgs24u8nnxqe3RvlhJdGdVLVxikZRG3N_4d-AZH9huA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30993231</pqid></control><display><type>article</type><title>Silicon–organic pigment material hybrids for photovoltaic application</title><source>Elsevier ScienceDirect Journals</source><creator>Mayer, T. ; Weiler, U. ; Kelting, C. ; Schlettwein, D. ; Makarov, S. ; Wöhrle, D. ; Abdallah, O. ; Kunst, M. ; Jaegermann, W.</creator><creatorcontrib>Mayer, T. ; Weiler, U. ; Kelting, C. ; Schlettwein, D. ; Makarov, S. ; Wöhrle, D. ; Abdallah, O. ; Kunst, M. ; Jaegermann, W.</creatorcontrib><description>Hybrid materials of silicon and organic dyes have been investigated for possible application as photovoltaic material in thin film solar cells. High conversion efficiency is expected from the combination of the advantages of organic dyes for light absorption and those of silicon for charge carrier separation and transport. Low temperature remote hot wire chemical vapor deposition (HWCVD) was developed for microcrystalline silicon (μc-Si) deposition using SiH
4/H
2 mixtures. As model dyes zinc phthalocyanines have been evaporated from Knudsen type sources. Layers of dye on μc-Si and μc-Si on dye films, and composites of simultaneously and sequentially deposited Si and dye have been prepared and characterized. Raman, absorption, and photoemission spectroscopy prove the stability of the organic molecules against the rough HWCVD-Si process. Transient microwave conductivity (TRMC) indicates good electronic quality of the μc-Si matrix. Energy transfer from dye to Si is indicated indirectly by luminescence and directly by photoconductivity measurements. F
x
ZnPc pigments with
x=0,4,8,16 have been synthesized, purified and adsorbed onto H-terminated Si(1
1
1) for electronic state line up determination by photoelectron spectroscopy. For
x=4 and 8 the dye frontier orbitals line up symmetrically versus the Si energy gap offering similar energetic driving forces for electron and hole injection, which is considered optimum for bulk sensitization and indicates a direction to improve the optoelectronic coupling of the organic dyes to silicon.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2007.07.004</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Absorption ; Applied sciences ; Charge transfer ; Energy ; Equipments, installations and applications ; Exact sciences and technology ; Inorganic–organic composites ; Natural energy ; Photoelectron spectroscopy ; Photovoltaic conversion ; Photovoltaic devices ; Pigments ; Raman spectroscopy ; Silicon ; Solar cells. Photoelectrochemical cells ; Solar energy</subject><ispartof>Solar energy materials and solar cells, 2007-12, Vol.91 (20), p.1873-1886</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-aab320bf8c6e58a7ce5dce59312275564f44f64a2b7ac72568d259f48e54d2f43</citedby><cites>FETCH-LOGICAL-c408t-aab320bf8c6e58a7ce5dce59312275564f44f64a2b7ac72568d259f48e54d2f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024807002553$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19159741$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mayer, T.</creatorcontrib><creatorcontrib>Weiler, U.</creatorcontrib><creatorcontrib>Kelting, C.</creatorcontrib><creatorcontrib>Schlettwein, D.</creatorcontrib><creatorcontrib>Makarov, S.</creatorcontrib><creatorcontrib>Wöhrle, D.</creatorcontrib><creatorcontrib>Abdallah, O.</creatorcontrib><creatorcontrib>Kunst, M.</creatorcontrib><creatorcontrib>Jaegermann, W.</creatorcontrib><title>Silicon–organic pigment material hybrids for photovoltaic application</title><title>Solar energy materials and solar cells</title><description>Hybrid materials of silicon and organic dyes have been investigated for possible application as photovoltaic material in thin film solar cells. High conversion efficiency is expected from the combination of the advantages of organic dyes for light absorption and those of silicon for charge carrier separation and transport. Low temperature remote hot wire chemical vapor deposition (HWCVD) was developed for microcrystalline silicon (μc-Si) deposition using SiH
4/H
2 mixtures. As model dyes zinc phthalocyanines have been evaporated from Knudsen type sources. Layers of dye on μc-Si and μc-Si on dye films, and composites of simultaneously and sequentially deposited Si and dye have been prepared and characterized. Raman, absorption, and photoemission spectroscopy prove the stability of the organic molecules against the rough HWCVD-Si process. Transient microwave conductivity (TRMC) indicates good electronic quality of the μc-Si matrix. Energy transfer from dye to Si is indicated indirectly by luminescence and directly by photoconductivity measurements. F
x
ZnPc pigments with
x=0,4,8,16 have been synthesized, purified and adsorbed onto H-terminated Si(1
1
1) for electronic state line up determination by photoelectron spectroscopy. For
x=4 and 8 the dye frontier orbitals line up symmetrically versus the Si energy gap offering similar energetic driving forces for electron and hole injection, which is considered optimum for bulk sensitization and indicates a direction to improve the optoelectronic coupling of the organic dyes to silicon.</description><subject>Absorption</subject><subject>Applied sciences</subject><subject>Charge transfer</subject><subject>Energy</subject><subject>Equipments, installations and applications</subject><subject>Exact sciences and technology</subject><subject>Inorganic–organic composites</subject><subject>Natural energy</subject><subject>Photoelectron spectroscopy</subject><subject>Photovoltaic conversion</subject><subject>Photovoltaic devices</subject><subject>Pigments</subject><subject>Raman spectroscopy</subject><subject>Silicon</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI6-gYtudNeaJulPNoIMOgoDLtR1uE2TmQxtU5PMwOx8B9_QJ7GlA-6Ec7mbc77LPQhdpzhJcZrfbRNvmxZCQjAuklGYnaBZWhY8ppSXp2iGOSliTFh5ji6832KMSU7ZDC3fTGOk7X6-vq1bQ2dk1Jt1q7oQDUDlDDTR5lA5U_tIWxf1Gxvs3jYBBif0_RCGYGx3ic40NF5dHfccfTw9vi-e49Xr8mXxsIolw2WIASpKcKVLmaushEKqrB6G05SQIstyphnTOQNSFSALkuVlTTKuWakyVhPN6BzdTtze2c-d8kG0xkvVNNApu_OCYs4poelgZJNROuu9U1r0zrTgDiLFYmxNbMXUmhhbE6PwyL858sFLaLSDThr_l-Vpxgs24u8nnxqe3RvlhJdGdVLVxikZRG3N_4d-AZH9huA</recordid><startdate>20071214</startdate><enddate>20071214</enddate><creator>Mayer, T.</creator><creator>Weiler, U.</creator><creator>Kelting, C.</creator><creator>Schlettwein, D.</creator><creator>Makarov, S.</creator><creator>Wöhrle, D.</creator><creator>Abdallah, O.</creator><creator>Kunst, M.</creator><creator>Jaegermann, W.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20071214</creationdate><title>Silicon–organic pigment material hybrids for photovoltaic application</title><author>Mayer, T. ; Weiler, U. ; Kelting, C. ; Schlettwein, D. ; Makarov, S. ; Wöhrle, D. ; Abdallah, O. ; Kunst, M. ; Jaegermann, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-aab320bf8c6e58a7ce5dce59312275564f44f64a2b7ac72568d259f48e54d2f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Absorption</topic><topic>Applied sciences</topic><topic>Charge transfer</topic><topic>Energy</topic><topic>Equipments, installations and applications</topic><topic>Exact sciences and technology</topic><topic>Inorganic–organic composites</topic><topic>Natural energy</topic><topic>Photoelectron spectroscopy</topic><topic>Photovoltaic conversion</topic><topic>Photovoltaic devices</topic><topic>Pigments</topic><topic>Raman spectroscopy</topic><topic>Silicon</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mayer, T.</creatorcontrib><creatorcontrib>Weiler, U.</creatorcontrib><creatorcontrib>Kelting, C.</creatorcontrib><creatorcontrib>Schlettwein, D.</creatorcontrib><creatorcontrib>Makarov, S.</creatorcontrib><creatorcontrib>Wöhrle, D.</creatorcontrib><creatorcontrib>Abdallah, O.</creatorcontrib><creatorcontrib>Kunst, M.</creatorcontrib><creatorcontrib>Jaegermann, W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mayer, T.</au><au>Weiler, U.</au><au>Kelting, C.</au><au>Schlettwein, D.</au><au>Makarov, S.</au><au>Wöhrle, D.</au><au>Abdallah, O.</au><au>Kunst, M.</au><au>Jaegermann, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon–organic pigment material hybrids for photovoltaic application</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2007-12-14</date><risdate>2007</risdate><volume>91</volume><issue>20</issue><spage>1873</spage><epage>1886</epage><pages>1873-1886</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Hybrid materials of silicon and organic dyes have been investigated for possible application as photovoltaic material in thin film solar cells. High conversion efficiency is expected from the combination of the advantages of organic dyes for light absorption and those of silicon for charge carrier separation and transport. Low temperature remote hot wire chemical vapor deposition (HWCVD) was developed for microcrystalline silicon (μc-Si) deposition using SiH
4/H
2 mixtures. As model dyes zinc phthalocyanines have been evaporated from Knudsen type sources. Layers of dye on μc-Si and μc-Si on dye films, and composites of simultaneously and sequentially deposited Si and dye have been prepared and characterized. Raman, absorption, and photoemission spectroscopy prove the stability of the organic molecules against the rough HWCVD-Si process. Transient microwave conductivity (TRMC) indicates good electronic quality of the μc-Si matrix. Energy transfer from dye to Si is indicated indirectly by luminescence and directly by photoconductivity measurements. F
x
ZnPc pigments with
x=0,4,8,16 have been synthesized, purified and adsorbed onto H-terminated Si(1
1
1) for electronic state line up determination by photoelectron spectroscopy. For
x=4 and 8 the dye frontier orbitals line up symmetrically versus the Si energy gap offering similar energetic driving forces for electron and hole injection, which is considered optimum for bulk sensitization and indicates a direction to improve the optoelectronic coupling of the organic dyes to silicon.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2007.07.004</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2007-12, Vol.91 (20), p.1873-1886 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_miscellaneous_30993231 |
source | Elsevier ScienceDirect Journals |
subjects | Absorption Applied sciences Charge transfer Energy Equipments, installations and applications Exact sciences and technology Inorganic–organic composites Natural energy Photoelectron spectroscopy Photovoltaic conversion Photovoltaic devices Pigments Raman spectroscopy Silicon Solar cells. Photoelectrochemical cells Solar energy |
title | Silicon–organic pigment material hybrids for photovoltaic application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A32%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%E2%80%93organic%20pigment%20material%20hybrids%20for%20photovoltaic%20application&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Mayer,%20T.&rft.date=2007-12-14&rft.volume=91&rft.issue=20&rft.spage=1873&rft.epage=1886&rft.pages=1873-1886&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2007.07.004&rft_dat=%3Cproquest_cross%3E30993231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30993231&rft_id=info:pmid/&rft_els_id=S0927024807002553&rfr_iscdi=true |