Dietary fiber-rich Lentinula edodes stems influence the structure and in vitro digestibility of low-moisture extruded maize starches
Low-moisture extrusion (LME) can be used to improve the utilization of dietary fiber-rich Lentinula edodes stems (LES). The incorporation of dietary fiber can affect heat-induced interactions of starch molecules, which are critical for modifying starch characteristics via LME. In this work, a blend...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-11, Vol.279 (Pt 1), p.135115, Article 135115 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Low-moisture extrusion (LME) can be used to improve the utilization of dietary fiber-rich Lentinula edodes stems (LES). The incorporation of dietary fiber can affect heat-induced interactions of starch molecules, which are critical for modifying starch characteristics via LME. In this work, a blend of LES and maize starch was extruded into a product at low moisture (30 %, w/v). The structure, physicochemical properties, and in vitro digestibility of extruded maize starches were investigated at different LES levels. The results showed that low levels (7 %) did not. Because of the LES's soluble to insoluble dietary fiber ratios, the increased crystallinity of LES-added starch led to greater molecular ordering and the formation of an elastic gel after LME. At a suitable LES level (~3 %), highly crystallized starches were resistant to enzymolysis and had a high proportion of resistant starch. The obtained findings would contribute to a better understanding of how dietary fiber-rich LES affects starch extrusion and provide an alternative use for boosting the value of LES by-products. |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.135115 |