Active and Passive Control of Spar Vortex-Induced Motions

Spars have become an “industry solution” for deepwater developments. Vortex-induced motion (VIM) of spar platforms in currents remains an important design concern. Although strakes are effective at suppressing riser VIM, all three straked classical spars in the Gulf of Mexico have experienced signif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of offshore mechanics and Arctic engineering 2007-11, Vol.129 (4), p.290-299
Hauptverfasser: Korpus, R. A., Liapis, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue 4
container_start_page 290
container_title Journal of offshore mechanics and Arctic engineering
container_volume 129
creator Korpus, R. A.
Liapis, S.
description Spars have become an “industry solution” for deepwater developments. Vortex-induced motion (VIM) of spar platforms in currents remains an important design concern. Although strakes are effective at suppressing riser VIM, all three straked classical spars in the Gulf of Mexico have experienced significant VIM events. These are not examples of poor design but indicate a lack of adequate tools for predicting spar VIM. This paper presents the development and validation of unsteady Reynolds-averaged Navier-Stokes (URANS) methods to predict real-world spar VIM behavior. It includes the ability to address rough surfaces and high supercritical Reynolds numbers. The resulting algorithms are used to assess the effectiveness of active and passive control strategies for suppressing spar VIM. Active control consists of injecting high-pressure water tangentially into the boundary layer and is shown to be extremely effective at reducing drag and VIM amplitudes. Passive control utilizes a sleeve to channel high-pressure stagnation flow into the boundary layer and is found less effective.
doi_str_mv 10.1115/1.2746400
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30990608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21018967</sourcerecordid><originalsourceid>FETCH-LOGICAL-a301t-7e007665274e6c2d7ab4b1436f0815c065bb493b1596d7387418f9923f818e4f3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFYPnr3kouAhOpP9PpbiR6Gi4Afelk2yCylptu6mov_e1BY8epo5PPPOy0PIKcIVIvJrvCokEwxgj4yQFypXWrzvkxEoXeSyQH1IjlJaACClHEZET6q--XSZ7ersyaa02aeh62Nos-Cz55WN2VuIvfvKZ129rlydPYS-CV06Jgfetsmd7OaYvN7evEzv8_nj3Ww6meeWAva5dABSCD7UcqIqamlLViKjwoNCXoHgZck0LZFrUUuqJEPltS6oV6gc83RMLra5qxg-1i71ZtmkyrWt7VxYJ0NBaxCg_gULBBxsyAG83IJVDClF580qNksbvw2C2Vg0aHYWB_Z8F2pTZVsfbVc16e9Abwr_Pj_bcjYtnVmEdewGKYZxRSWlP_OVdwk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21018967</pqid></control><display><type>article</type><title>Active and Passive Control of Spar Vortex-Induced Motions</title><source>ASME Transactions Journals (Current)</source><creator>Korpus, R. A. ; Liapis, S.</creator><creatorcontrib>Korpus, R. A. ; Liapis, S.</creatorcontrib><description>Spars have become an “industry solution” for deepwater developments. Vortex-induced motion (VIM) of spar platforms in currents remains an important design concern. Although strakes are effective at suppressing riser VIM, all three straked classical spars in the Gulf of Mexico have experienced significant VIM events. These are not examples of poor design but indicate a lack of adequate tools for predicting spar VIM. This paper presents the development and validation of unsteady Reynolds-averaged Navier-Stokes (URANS) methods to predict real-world spar VIM behavior. It includes the ability to address rough surfaces and high supercritical Reynolds numbers. The resulting algorithms are used to assess the effectiveness of active and passive control strategies for suppressing spar VIM. Active control consists of injecting high-pressure water tangentially into the boundary layer and is shown to be extremely effective at reducing drag and VIM amplitudes. Passive control utilizes a sleeve to channel high-pressure stagnation flow into the boundary layer and is found less effective.</description><identifier>ISSN: 0892-7219</identifier><identifier>EISSN: 1528-896X</identifier><identifier>DOI: 10.1115/1.2746400</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied sciences ; Characteristics of producing layers. Reservoir geology. In situ fluids ; Crude oil, natural gas and petroleum products ; Crude oil, natural gas, oil shales producing equipements and methods ; Energy ; Exact sciences and technology ; Fluid dynamics ; Fuels ; Fundamental areas of phenomenology (including applications) ; General theory ; Physics ; Prospecting and production of crude oil, natural gas, oil shales and tar sands ; Rotational flow and vorticity</subject><ispartof>Journal of offshore mechanics and Arctic engineering, 2007-11, Vol.129 (4), p.290-299</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a301t-7e007665274e6c2d7ab4b1436f0815c065bb493b1596d7387418f9923f818e4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19874108$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Korpus, R. A.</creatorcontrib><creatorcontrib>Liapis, S.</creatorcontrib><title>Active and Passive Control of Spar Vortex-Induced Motions</title><title>Journal of offshore mechanics and Arctic engineering</title><addtitle>J. Offshore Mech. Arct. Eng</addtitle><description>Spars have become an “industry solution” for deepwater developments. Vortex-induced motion (VIM) of spar platforms in currents remains an important design concern. Although strakes are effective at suppressing riser VIM, all three straked classical spars in the Gulf of Mexico have experienced significant VIM events. These are not examples of poor design but indicate a lack of adequate tools for predicting spar VIM. This paper presents the development and validation of unsteady Reynolds-averaged Navier-Stokes (URANS) methods to predict real-world spar VIM behavior. It includes the ability to address rough surfaces and high supercritical Reynolds numbers. The resulting algorithms are used to assess the effectiveness of active and passive control strategies for suppressing spar VIM. Active control consists of injecting high-pressure water tangentially into the boundary layer and is shown to be extremely effective at reducing drag and VIM amplitudes. Passive control utilizes a sleeve to channel high-pressure stagnation flow into the boundary layer and is found less effective.</description><subject>Applied sciences</subject><subject>Characteristics of producing layers. Reservoir geology. In situ fluids</subject><subject>Crude oil, natural gas and petroleum products</subject><subject>Crude oil, natural gas, oil shales producing equipements and methods</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fuels</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Physics</subject><subject>Prospecting and production of crude oil, natural gas, oil shales and tar sands</subject><subject>Rotational flow and vorticity</subject><issn>0892-7219</issn><issn>1528-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFYPnr3kouAhOpP9PpbiR6Gi4Afelk2yCylptu6mov_e1BY8epo5PPPOy0PIKcIVIvJrvCokEwxgj4yQFypXWrzvkxEoXeSyQH1IjlJaACClHEZET6q--XSZ7ersyaa02aeh62Nos-Cz55WN2VuIvfvKZ129rlydPYS-CV06Jgfetsmd7OaYvN7evEzv8_nj3Ww6meeWAva5dABSCD7UcqIqamlLViKjwoNCXoHgZck0LZFrUUuqJEPltS6oV6gc83RMLra5qxg-1i71ZtmkyrWt7VxYJ0NBaxCg_gULBBxsyAG83IJVDClF580qNksbvw2C2Vg0aHYWB_Z8F2pTZVsfbVc16e9Abwr_Pj_bcjYtnVmEdewGKYZxRSWlP_OVdwk</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Korpus, R. A.</creator><creator>Liapis, S.</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20071101</creationdate><title>Active and Passive Control of Spar Vortex-Induced Motions</title><author>Korpus, R. A. ; Liapis, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a301t-7e007665274e6c2d7ab4b1436f0815c065bb493b1596d7387418f9923f818e4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Characteristics of producing layers. Reservoir geology. In situ fluids</topic><topic>Crude oil, natural gas and petroleum products</topic><topic>Crude oil, natural gas, oil shales producing equipements and methods</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fuels</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Physics</topic><topic>Prospecting and production of crude oil, natural gas, oil shales and tar sands</topic><topic>Rotational flow and vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korpus, R. A.</creatorcontrib><creatorcontrib>Liapis, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of offshore mechanics and Arctic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korpus, R. A.</au><au>Liapis, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active and Passive Control of Spar Vortex-Induced Motions</atitle><jtitle>Journal of offshore mechanics and Arctic engineering</jtitle><stitle>J. Offshore Mech. Arct. Eng</stitle><date>2007-11-01</date><risdate>2007</risdate><volume>129</volume><issue>4</issue><spage>290</spage><epage>299</epage><pages>290-299</pages><issn>0892-7219</issn><eissn>1528-896X</eissn><abstract>Spars have become an “industry solution” for deepwater developments. Vortex-induced motion (VIM) of spar platforms in currents remains an important design concern. Although strakes are effective at suppressing riser VIM, all three straked classical spars in the Gulf of Mexico have experienced significant VIM events. These are not examples of poor design but indicate a lack of adequate tools for predicting spar VIM. This paper presents the development and validation of unsteady Reynolds-averaged Navier-Stokes (URANS) methods to predict real-world spar VIM behavior. It includes the ability to address rough surfaces and high supercritical Reynolds numbers. The resulting algorithms are used to assess the effectiveness of active and passive control strategies for suppressing spar VIM. Active control consists of injecting high-pressure water tangentially into the boundary layer and is shown to be extremely effective at reducing drag and VIM amplitudes. Passive control utilizes a sleeve to channel high-pressure stagnation flow into the boundary layer and is found less effective.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2746400</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0892-7219
ispartof Journal of offshore mechanics and Arctic engineering, 2007-11, Vol.129 (4), p.290-299
issn 0892-7219
1528-896X
language eng
recordid cdi_proquest_miscellaneous_30990608
source ASME Transactions Journals (Current)
subjects Applied sciences
Characteristics of producing layers. Reservoir geology. In situ fluids
Crude oil, natural gas and petroleum products
Crude oil, natural gas, oil shales producing equipements and methods
Energy
Exact sciences and technology
Fluid dynamics
Fuels
Fundamental areas of phenomenology (including applications)
General theory
Physics
Prospecting and production of crude oil, natural gas, oil shales and tar sands
Rotational flow and vorticity
title Active and Passive Control of Spar Vortex-Induced Motions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20and%20Passive%20Control%20of%20Spar%20Vortex-Induced%20Motions&rft.jtitle=Journal%20of%20offshore%20mechanics%20and%20Arctic%20engineering&rft.au=Korpus,%20R.%20A.&rft.date=2007-11-01&rft.volume=129&rft.issue=4&rft.spage=290&rft.epage=299&rft.pages=290-299&rft.issn=0892-7219&rft.eissn=1528-896X&rft_id=info:doi/10.1115/1.2746400&rft_dat=%3Cproquest_cross%3E21018967%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21018967&rft_id=info:pmid/&rfr_iscdi=true