Testing for Trends in Dose-Response Microarray Experiments: A Comparison of Several Testing Procedures, Multiplicity and Resampling-Based Inference
Dose-response studies are commonly used in experiments in pharmaceutical research in order to investigate the dependence of the response on dose, i.e., a trend of the response level toxicity with respect to dose. In this paper we focus on dose-response experiments within a microarray setting in whic...
Gespeichert in:
Veröffentlicht in: | Statistical applications in genetics and molecular biology 2007-10, Vol.6 (1), p.1283-1283 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1283 |
---|---|
container_issue | 1 |
container_start_page | 1283 |
container_title | Statistical applications in genetics and molecular biology |
container_volume | 6 |
creator | Lin, Dan Shkedy, Ziv Yekutieli, Dani Burzykowski, Tomasz Gohlmann, Hinrich W H De Bondt, An Perera, Tim Geerts, Tamara Bijnens, Luc |
description | Dose-response studies are commonly used in experiments in pharmaceutical research in order to investigate the dependence of the response on dose, i.e., a trend of the response level toxicity with respect to dose. In this paper we focus on dose-response experiments within a microarray setting in which several microarrays are available for a sequence of increasing dose levels. A gene is called differentially expressed if there is a monotonic trend (with respect to dose) in the gene expression. We review several testing procedures which can be used in order to test equality among the gene expression means against ordered alternatives with respect to dose, namely Williams' (Williams 1971 and 1972), Marcus' (Marcus 1976), global likelihood ratio test (Bartholomew 1961, Barlow et al. 1972, and Robertson et al. 1988), and M (Hu et al. 2005) statistics. Additionally we introduce a modification to the standard error of the M statistic. We compare the performance of these five test statistics. Moreover, we discuss the issue of one-sided versus two-sided testing procedures. False Discovery Rate (Benjamni and Hochberg 1995, Ge et al. 2003), and resampling-based Familywise Error Rate (Westfall and Young 1993) are used to handle the multiple testing issue. The methods above are applied to a data set with 4 doses (3 arrays per dose) and 16,998 genes. Results on the number of significant genes from each statistic are discussed. A simulation study is conducted to investigate the power of each statistic. A R library IsoGene implementing the methods is available from the first author. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_30988241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30988241</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_309882413</originalsourceid><addsrcrecordid>eNqNzs1KxEAQBOA5KLj-vEOfPBnIJFlZvem6oocF0dyXZtJZRibdY3ci7nP4wuagd08FRfFRR27hl01TXHu_PHGnZu9lWfmqLhfuuyUbI--hF4VWiTuDyPAgRsUrWRY2gm0MKqiKB9h8ZdI4EI92C3ewliGjRhMG6eGNPkkxwZ_5ohKom5TsCrZTGmNOMcTxAMgdzDoOc8H74h6NOnjmnuYDgc7dcY_J6OI3z9zl46ZdPxVZ5WOa7d0QLVBKyCST7eryZrWqGl__e_gDgRhadw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30988241</pqid></control><display><type>article</type><title>Testing for Trends in Dose-Response Microarray Experiments: A Comparison of Several Testing Procedures, Multiplicity and Resampling-Based Inference</title><source>De Gruyter journals</source><creator>Lin, Dan ; Shkedy, Ziv ; Yekutieli, Dani ; Burzykowski, Tomasz ; Gohlmann, Hinrich W H ; De Bondt, An ; Perera, Tim ; Geerts, Tamara ; Bijnens, Luc</creator><creatorcontrib>Lin, Dan ; Shkedy, Ziv ; Yekutieli, Dani ; Burzykowski, Tomasz ; Gohlmann, Hinrich W H ; De Bondt, An ; Perera, Tim ; Geerts, Tamara ; Bijnens, Luc</creatorcontrib><description>Dose-response studies are commonly used in experiments in pharmaceutical research in order to investigate the dependence of the response on dose, i.e., a trend of the response level toxicity with respect to dose. In this paper we focus on dose-response experiments within a microarray setting in which several microarrays are available for a sequence of increasing dose levels. A gene is called differentially expressed if there is a monotonic trend (with respect to dose) in the gene expression. We review several testing procedures which can be used in order to test equality among the gene expression means against ordered alternatives with respect to dose, namely Williams' (Williams 1971 and 1972), Marcus' (Marcus 1976), global likelihood ratio test (Bartholomew 1961, Barlow et al. 1972, and Robertson et al. 1988), and M (Hu et al. 2005) statistics. Additionally we introduce a modification to the standard error of the M statistic. We compare the performance of these five test statistics. Moreover, we discuss the issue of one-sided versus two-sided testing procedures. False Discovery Rate (Benjamni and Hochberg 1995, Ge et al. 2003), and resampling-based Familywise Error Rate (Westfall and Young 1993) are used to handle the multiple testing issue. The methods above are applied to a data set with 4 doses (3 arrays per dose) and 16,998 genes. Results on the number of significant genes from each statistic are discussed. A simulation study is conducted to investigate the power of each statistic. A R library IsoGene implementing the methods is available from the first author.</description><identifier>ISSN: 1544-6115</identifier><language>eng</language><ispartof>Statistical applications in genetics and molecular biology, 2007-10, Vol.6 (1), p.1283-1283</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Lin, Dan</creatorcontrib><creatorcontrib>Shkedy, Ziv</creatorcontrib><creatorcontrib>Yekutieli, Dani</creatorcontrib><creatorcontrib>Burzykowski, Tomasz</creatorcontrib><creatorcontrib>Gohlmann, Hinrich W H</creatorcontrib><creatorcontrib>De Bondt, An</creatorcontrib><creatorcontrib>Perera, Tim</creatorcontrib><creatorcontrib>Geerts, Tamara</creatorcontrib><creatorcontrib>Bijnens, Luc</creatorcontrib><title>Testing for Trends in Dose-Response Microarray Experiments: A Comparison of Several Testing Procedures, Multiplicity and Resampling-Based Inference</title><title>Statistical applications in genetics and molecular biology</title><description>Dose-response studies are commonly used in experiments in pharmaceutical research in order to investigate the dependence of the response on dose, i.e., a trend of the response level toxicity with respect to dose. In this paper we focus on dose-response experiments within a microarray setting in which several microarrays are available for a sequence of increasing dose levels. A gene is called differentially expressed if there is a monotonic trend (with respect to dose) in the gene expression. We review several testing procedures which can be used in order to test equality among the gene expression means against ordered alternatives with respect to dose, namely Williams' (Williams 1971 and 1972), Marcus' (Marcus 1976), global likelihood ratio test (Bartholomew 1961, Barlow et al. 1972, and Robertson et al. 1988), and M (Hu et al. 2005) statistics. Additionally we introduce a modification to the standard error of the M statistic. We compare the performance of these five test statistics. Moreover, we discuss the issue of one-sided versus two-sided testing procedures. False Discovery Rate (Benjamni and Hochberg 1995, Ge et al. 2003), and resampling-based Familywise Error Rate (Westfall and Young 1993) are used to handle the multiple testing issue. The methods above are applied to a data set with 4 doses (3 arrays per dose) and 16,998 genes. Results on the number of significant genes from each statistic are discussed. A simulation study is conducted to investigate the power of each statistic. A R library IsoGene implementing the methods is available from the first author.</description><issn>1544-6115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNzs1KxEAQBOA5KLj-vEOfPBnIJFlZvem6oocF0dyXZtJZRibdY3ci7nP4wuagd08FRfFRR27hl01TXHu_PHGnZu9lWfmqLhfuuyUbI--hF4VWiTuDyPAgRsUrWRY2gm0MKqiKB9h8ZdI4EI92C3ewliGjRhMG6eGNPkkxwZ_5ohKom5TsCrZTGmNOMcTxAMgdzDoOc8H74h6NOnjmnuYDgc7dcY_J6OI3z9zl46ZdPxVZ5WOa7d0QLVBKyCST7eryZrWqGl__e_gDgRhadw</recordid><startdate>20071011</startdate><enddate>20071011</enddate><creator>Lin, Dan</creator><creator>Shkedy, Ziv</creator><creator>Yekutieli, Dani</creator><creator>Burzykowski, Tomasz</creator><creator>Gohlmann, Hinrich W H</creator><creator>De Bondt, An</creator><creator>Perera, Tim</creator><creator>Geerts, Tamara</creator><creator>Bijnens, Luc</creator><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20071011</creationdate><title>Testing for Trends in Dose-Response Microarray Experiments: A Comparison of Several Testing Procedures, Multiplicity and Resampling-Based Inference</title><author>Lin, Dan ; Shkedy, Ziv ; Yekutieli, Dani ; Burzykowski, Tomasz ; Gohlmann, Hinrich W H ; De Bondt, An ; Perera, Tim ; Geerts, Tamara ; Bijnens, Luc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_309882413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Dan</creatorcontrib><creatorcontrib>Shkedy, Ziv</creatorcontrib><creatorcontrib>Yekutieli, Dani</creatorcontrib><creatorcontrib>Burzykowski, Tomasz</creatorcontrib><creatorcontrib>Gohlmann, Hinrich W H</creatorcontrib><creatorcontrib>De Bondt, An</creatorcontrib><creatorcontrib>Perera, Tim</creatorcontrib><creatorcontrib>Geerts, Tamara</creatorcontrib><creatorcontrib>Bijnens, Luc</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistical applications in genetics and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Dan</au><au>Shkedy, Ziv</au><au>Yekutieli, Dani</au><au>Burzykowski, Tomasz</au><au>Gohlmann, Hinrich W H</au><au>De Bondt, An</au><au>Perera, Tim</au><au>Geerts, Tamara</au><au>Bijnens, Luc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing for Trends in Dose-Response Microarray Experiments: A Comparison of Several Testing Procedures, Multiplicity and Resampling-Based Inference</atitle><jtitle>Statistical applications in genetics and molecular biology</jtitle><date>2007-10-11</date><risdate>2007</risdate><volume>6</volume><issue>1</issue><spage>1283</spage><epage>1283</epage><pages>1283-1283</pages><issn>1544-6115</issn><abstract>Dose-response studies are commonly used in experiments in pharmaceutical research in order to investigate the dependence of the response on dose, i.e., a trend of the response level toxicity with respect to dose. In this paper we focus on dose-response experiments within a microarray setting in which several microarrays are available for a sequence of increasing dose levels. A gene is called differentially expressed if there is a monotonic trend (with respect to dose) in the gene expression. We review several testing procedures which can be used in order to test equality among the gene expression means against ordered alternatives with respect to dose, namely Williams' (Williams 1971 and 1972), Marcus' (Marcus 1976), global likelihood ratio test (Bartholomew 1961, Barlow et al. 1972, and Robertson et al. 1988), and M (Hu et al. 2005) statistics. Additionally we introduce a modification to the standard error of the M statistic. We compare the performance of these five test statistics. Moreover, we discuss the issue of one-sided versus two-sided testing procedures. False Discovery Rate (Benjamni and Hochberg 1995, Ge et al. 2003), and resampling-based Familywise Error Rate (Westfall and Young 1993) are used to handle the multiple testing issue. The methods above are applied to a data set with 4 doses (3 arrays per dose) and 16,998 genes. Results on the number of significant genes from each statistic are discussed. A simulation study is conducted to investigate the power of each statistic. A R library IsoGene implementing the methods is available from the first author.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1544-6115 |
ispartof | Statistical applications in genetics and molecular biology, 2007-10, Vol.6 (1), p.1283-1283 |
issn | 1544-6115 |
language | eng |
recordid | cdi_proquest_miscellaneous_30988241 |
source | De Gruyter journals |
title | Testing for Trends in Dose-Response Microarray Experiments: A Comparison of Several Testing Procedures, Multiplicity and Resampling-Based Inference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20for%20Trends%20in%20Dose-Response%20Microarray%20Experiments:%20A%20Comparison%20of%20Several%20Testing%20Procedures,%20Multiplicity%20and%20Resampling-Based%20Inference&rft.jtitle=Statistical%20applications%20in%20genetics%20and%20molecular%20biology&rft.au=Lin,%20Dan&rft.date=2007-10-11&rft.volume=6&rft.issue=1&rft.spage=1283&rft.epage=1283&rft.pages=1283-1283&rft.issn=1544-6115&rft_id=info:doi/&rft_dat=%3Cproquest%3E30988241%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30988241&rft_id=info:pmid/&rfr_iscdi=true |