Contrasting Multi-Source Temporal Knowledge Graphs for Biomedical Hypothesis Generation

Hypothesis Generation (HG) aims to expedite biomedical researches by generating novel hypotheses from existing scientific literature. Most existing studies focused on modeling static snapshots of the corpus, neglecting the temporal evolution of scientific terms. Despite recent efforts to learn term...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2024-11, Vol.21 (6), p.2102-2112
Hauptverfasser: Zhou, Huiwei, Li, Wenchu, Yao, Weihong, Lin, Yingyu, Du, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2112
container_issue 6
container_start_page 2102
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 21
creator Zhou, Huiwei
Li, Wenchu
Yao, Weihong
Lin, Yingyu
Du, Lei
description Hypothesis Generation (HG) aims to expedite biomedical researches by generating novel hypotheses from existing scientific literature. Most existing studies focused on modeling static snapshots of the corpus, neglecting the temporal evolution of scientific terms. Despite recent efforts to learn term evolution from Knowledge Bases (KBs) for HG, the temporal information from multi-source KBs is still overlooked, which contains important, up-to-date knowledge. In this paper, an innovative Temporal Contrastive Learning (TCL) framework is introduced to uncover latent associations between entities by jointly modeling their co-evolution across multi-source temporal KBs. Specifically, we first construct a temporal relation graph based on PubMed papers and a biomedical relation database (such as Comparative Toxicogenomics Database (CTD)). Then the constructed temporal relation graph and a temporal concept graph (such as Medical Subject Headings (MeSH)) are used to train two GCN-based recurrent networks for learning the entity temporal evolutional embeddings, respectively. Finally, a cross-view temporal prediction task is designed for learning knowledge enriched temporal embeddings by contrasting the temporal embeddings learned from the two Temporal Knowledge Graphs (TKGs). Findings from experiments conducted on three real-world biomedical term relationship datasets demonstrate that the proposed approach is clearly superior to approaches based on single TKG, achieving the state-of-the-art performance.
doi_str_mv 10.1109/TCBB.2024.3451051
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_3098278262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10654589</ieee_id><sourcerecordid>3098278262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204t-43d8fc8c9e098abab29659201de40a3454f305e9d874de112e84107a7f3febfa3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRrFZ_gCCSo5fU_crHHm3QVqx4sOIxbJLZdiXJxt0E6b93Q6t4moF53hfmQeiK4BkhWNyts_l8RjHlM8YjgiNyhM5IFCWhEDE_HncehZGI2QSdO_eJPSkwP0UTJoiIE56eoY_MtL2VrtftJngZ6l6Hb2awJQRraDpjZR08t-a7hmoDwcLKbusCZWww16aBSpf-vtx1pt-C0y5YQAtW9tq0F-hEydrB5WFO0fvjwzpbhqvXxVN2vwpLinkfclalqkxLAVikspAFFXEkKCYVcCz9V1wxHIGo0oRXQAiFlBOcyEQxBYWSbIpu972dNV8DuD5vtCuhrmULZnA58700SWlMPUr2aGmNcxZU3lndSLvLCc5Hn_noMx995gefPnNzqB8K_-9f4legB673gAaAf4WxV58K9gPOjnpn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098278262</pqid></control><display><type>article</type><title>Contrasting Multi-Source Temporal Knowledge Graphs for Biomedical Hypothesis Generation</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Huiwei ; Li, Wenchu ; Yao, Weihong ; Lin, Yingyu ; Du, Lei</creator><creatorcontrib>Zhou, Huiwei ; Li, Wenchu ; Yao, Weihong ; Lin, Yingyu ; Du, Lei</creatorcontrib><description>Hypothesis Generation (HG) aims to expedite biomedical researches by generating novel hypotheses from existing scientific literature. Most existing studies focused on modeling static snapshots of the corpus, neglecting the temporal evolution of scientific terms. Despite recent efforts to learn term evolution from Knowledge Bases (KBs) for HG, the temporal information from multi-source KBs is still overlooked, which contains important, up-to-date knowledge. In this paper, an innovative Temporal Contrastive Learning (TCL) framework is introduced to uncover latent associations between entities by jointly modeling their co-evolution across multi-source temporal KBs. Specifically, we first construct a temporal relation graph based on PubMed papers and a biomedical relation database (such as Comparative Toxicogenomics Database (CTD)). Then the constructed temporal relation graph and a temporal concept graph (such as Medical Subject Headings (MeSH)) are used to train two GCN-based recurrent networks for learning the entity temporal evolutional embeddings, respectively. Finally, a cross-view temporal prediction task is designed for learning knowledge enriched temporal embeddings by contrasting the temporal embeddings learned from the two Temporal Knowledge Graphs (TKGs). Findings from experiments conducted on three real-world biomedical term relationship datasets demonstrate that the proposed approach is clearly superior to approaches based on single TKG, achieving the state-of-the-art performance.</description><identifier>ISSN: 1545-5963</identifier><identifier>ISSN: 1557-9964</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2024.3451051</identifier><identifier>PMID: 39196748</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biological system modeling ; Cardiovascular diseases ; co-evolution ; Computational modeling ; Contrastive learning ; Evolution (biology) ; Hypertension ; Hypothesis generation (HG) ; Knowledge based systems ; temporal contrastive learning (TCL) ; temporal knowledge graph (TKG)</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2024-11, Vol.21 (6), p.2102-2112</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8562-129X ; 0000-0002-7766-4177 ; 0009-0006-3301-5147 ; 0009-0002-3145-3494 ; 0009-0009-6704-5573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10654589$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10654589$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39196748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Huiwei</creatorcontrib><creatorcontrib>Li, Wenchu</creatorcontrib><creatorcontrib>Yao, Weihong</creatorcontrib><creatorcontrib>Lin, Yingyu</creatorcontrib><creatorcontrib>Du, Lei</creatorcontrib><title>Contrasting Multi-Source Temporal Knowledge Graphs for Biomedical Hypothesis Generation</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Hypothesis Generation (HG) aims to expedite biomedical researches by generating novel hypotheses from existing scientific literature. Most existing studies focused on modeling static snapshots of the corpus, neglecting the temporal evolution of scientific terms. Despite recent efforts to learn term evolution from Knowledge Bases (KBs) for HG, the temporal information from multi-source KBs is still overlooked, which contains important, up-to-date knowledge. In this paper, an innovative Temporal Contrastive Learning (TCL) framework is introduced to uncover latent associations between entities by jointly modeling their co-evolution across multi-source temporal KBs. Specifically, we first construct a temporal relation graph based on PubMed papers and a biomedical relation database (such as Comparative Toxicogenomics Database (CTD)). Then the constructed temporal relation graph and a temporal concept graph (such as Medical Subject Headings (MeSH)) are used to train two GCN-based recurrent networks for learning the entity temporal evolutional embeddings, respectively. Finally, a cross-view temporal prediction task is designed for learning knowledge enriched temporal embeddings by contrasting the temporal embeddings learned from the two Temporal Knowledge Graphs (TKGs). Findings from experiments conducted on three real-world biomedical term relationship datasets demonstrate that the proposed approach is clearly superior to approaches based on single TKG, achieving the state-of-the-art performance.</description><subject>Biological system modeling</subject><subject>Cardiovascular diseases</subject><subject>co-evolution</subject><subject>Computational modeling</subject><subject>Contrastive learning</subject><subject>Evolution (biology)</subject><subject>Hypertension</subject><subject>Hypothesis generation (HG)</subject><subject>Knowledge based systems</subject><subject>temporal contrastive learning (TCL)</subject><subject>temporal knowledge graph (TKG)</subject><issn>1545-5963</issn><issn>1557-9964</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRrFZ_gCCSo5fU_crHHm3QVqx4sOIxbJLZdiXJxt0E6b93Q6t4moF53hfmQeiK4BkhWNyts_l8RjHlM8YjgiNyhM5IFCWhEDE_HncehZGI2QSdO_eJPSkwP0UTJoiIE56eoY_MtL2VrtftJngZ6l6Hb2awJQRraDpjZR08t-a7hmoDwcLKbusCZWww16aBSpf-vtx1pt-C0y5YQAtW9tq0F-hEydrB5WFO0fvjwzpbhqvXxVN2vwpLinkfclalqkxLAVikspAFFXEkKCYVcCz9V1wxHIGo0oRXQAiFlBOcyEQxBYWSbIpu972dNV8DuD5vtCuhrmULZnA58700SWlMPUr2aGmNcxZU3lndSLvLCc5Hn_noMx995gefPnNzqB8K_-9f4legB673gAaAf4WxV58K9gPOjnpn</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Zhou, Huiwei</creator><creator>Li, Wenchu</creator><creator>Yao, Weihong</creator><creator>Lin, Yingyu</creator><creator>Du, Lei</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8562-129X</orcidid><orcidid>https://orcid.org/0000-0002-7766-4177</orcidid><orcidid>https://orcid.org/0009-0006-3301-5147</orcidid><orcidid>https://orcid.org/0009-0002-3145-3494</orcidid><orcidid>https://orcid.org/0009-0009-6704-5573</orcidid></search><sort><creationdate>20241101</creationdate><title>Contrasting Multi-Source Temporal Knowledge Graphs for Biomedical Hypothesis Generation</title><author>Zhou, Huiwei ; Li, Wenchu ; Yao, Weihong ; Lin, Yingyu ; Du, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204t-43d8fc8c9e098abab29659201de40a3454f305e9d874de112e84107a7f3febfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological system modeling</topic><topic>Cardiovascular diseases</topic><topic>co-evolution</topic><topic>Computational modeling</topic><topic>Contrastive learning</topic><topic>Evolution (biology)</topic><topic>Hypertension</topic><topic>Hypothesis generation (HG)</topic><topic>Knowledge based systems</topic><topic>temporal contrastive learning (TCL)</topic><topic>temporal knowledge graph (TKG)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Huiwei</creatorcontrib><creatorcontrib>Li, Wenchu</creatorcontrib><creatorcontrib>Yao, Weihong</creatorcontrib><creatorcontrib>Lin, Yingyu</creatorcontrib><creatorcontrib>Du, Lei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Huiwei</au><au>Li, Wenchu</au><au>Yao, Weihong</au><au>Lin, Yingyu</au><au>Du, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contrasting Multi-Source Temporal Knowledge Graphs for Biomedical Hypothesis Generation</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>21</volume><issue>6</issue><spage>2102</spage><epage>2112</epage><pages>2102-2112</pages><issn>1545-5963</issn><issn>1557-9964</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Hypothesis Generation (HG) aims to expedite biomedical researches by generating novel hypotheses from existing scientific literature. Most existing studies focused on modeling static snapshots of the corpus, neglecting the temporal evolution of scientific terms. Despite recent efforts to learn term evolution from Knowledge Bases (KBs) for HG, the temporal information from multi-source KBs is still overlooked, which contains important, up-to-date knowledge. In this paper, an innovative Temporal Contrastive Learning (TCL) framework is introduced to uncover latent associations between entities by jointly modeling their co-evolution across multi-source temporal KBs. Specifically, we first construct a temporal relation graph based on PubMed papers and a biomedical relation database (such as Comparative Toxicogenomics Database (CTD)). Then the constructed temporal relation graph and a temporal concept graph (such as Medical Subject Headings (MeSH)) are used to train two GCN-based recurrent networks for learning the entity temporal evolutional embeddings, respectively. Finally, a cross-view temporal prediction task is designed for learning knowledge enriched temporal embeddings by contrasting the temporal embeddings learned from the two Temporal Knowledge Graphs (TKGs). Findings from experiments conducted on three real-world biomedical term relationship datasets demonstrate that the proposed approach is clearly superior to approaches based on single TKG, achieving the state-of-the-art performance.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39196748</pmid><doi>10.1109/TCBB.2024.3451051</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8562-129X</orcidid><orcidid>https://orcid.org/0000-0002-7766-4177</orcidid><orcidid>https://orcid.org/0009-0006-3301-5147</orcidid><orcidid>https://orcid.org/0009-0002-3145-3494</orcidid><orcidid>https://orcid.org/0009-0009-6704-5573</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2024-11, Vol.21 (6), p.2102-2112
issn 1545-5963
1557-9964
1557-9964
language eng
recordid cdi_proquest_miscellaneous_3098278262
source IEEE Electronic Library (IEL)
subjects Biological system modeling
Cardiovascular diseases
co-evolution
Computational modeling
Contrastive learning
Evolution (biology)
Hypertension
Hypothesis generation (HG)
Knowledge based systems
temporal contrastive learning (TCL)
temporal knowledge graph (TKG)
title Contrasting Multi-Source Temporal Knowledge Graphs for Biomedical Hypothesis Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contrasting%20Multi-Source%20Temporal%20Knowledge%20Graphs%20for%20Biomedical%20Hypothesis%20Generation&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Zhou,%20Huiwei&rft.date=2024-11-01&rft.volume=21&rft.issue=6&rft.spage=2102&rft.epage=2112&rft.pages=2102-2112&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2024.3451051&rft_dat=%3Cproquest_RIE%3E3098278262%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098278262&rft_id=info:pmid/39196748&rft_ieee_id=10654589&rfr_iscdi=true