Contrasting Multi-Source Temporal Knowledge Graphs for Biomedical Hypothesis Generation
Hypothesis Generation (HG) aims to expedite biomedical researches by generating novel hypotheses from existing scientific literature. Most existing studies focused on modeling static snapshots of the corpus, neglecting the temporal evolution of scientific terms. Despite recent efforts to learn term...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on computational biology and bioinformatics 2024-11, Vol.21 (6), p.2102-2112 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2112 |
---|---|
container_issue | 6 |
container_start_page | 2102 |
container_title | IEEE/ACM transactions on computational biology and bioinformatics |
container_volume | 21 |
creator | Zhou, Huiwei Li, Wenchu Yao, Weihong Lin, Yingyu Du, Lei |
description | Hypothesis Generation (HG) aims to expedite biomedical researches by generating novel hypotheses from existing scientific literature. Most existing studies focused on modeling static snapshots of the corpus, neglecting the temporal evolution of scientific terms. Despite recent efforts to learn term evolution from Knowledge Bases (KBs) for HG, the temporal information from multi-source KBs is still overlooked, which contains important, up-to-date knowledge. In this paper, an innovative Temporal Contrastive Learning (TCL) framework is introduced to uncover latent associations between entities by jointly modeling their co-evolution across multi-source temporal KBs. Specifically, we first construct a temporal relation graph based on PubMed papers and a biomedical relation database (such as Comparative Toxicogenomics Database (CTD)). Then the constructed temporal relation graph and a temporal concept graph (such as Medical Subject Headings (MeSH)) are used to train two GCN-based recurrent networks for learning the entity temporal evolutional embeddings, respectively. Finally, a cross-view temporal prediction task is designed for learning knowledge enriched temporal embeddings by contrasting the temporal embeddings learned from the two Temporal Knowledge Graphs (TKGs). Findings from experiments conducted on three real-world biomedical term relationship datasets demonstrate that the proposed approach is clearly superior to approaches based on single TKG, achieving the state-of-the-art performance. |
doi_str_mv | 10.1109/TCBB.2024.3451051 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_3098278262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10654589</ieee_id><sourcerecordid>3098278262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204t-43d8fc8c9e098abab29659201de40a3454f305e9d874de112e84107a7f3febfa3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRrFZ_gCCSo5fU_crHHm3QVqx4sOIxbJLZdiXJxt0E6b93Q6t4moF53hfmQeiK4BkhWNyts_l8RjHlM8YjgiNyhM5IFCWhEDE_HncehZGI2QSdO_eJPSkwP0UTJoiIE56eoY_MtL2VrtftJngZ6l6Hb2awJQRraDpjZR08t-a7hmoDwcLKbusCZWww16aBSpf-vtx1pt-C0y5YQAtW9tq0F-hEydrB5WFO0fvjwzpbhqvXxVN2vwpLinkfclalqkxLAVikspAFFXEkKCYVcCz9V1wxHIGo0oRXQAiFlBOcyEQxBYWSbIpu972dNV8DuD5vtCuhrmULZnA58700SWlMPUr2aGmNcxZU3lndSLvLCc5Hn_noMx995gefPnNzqB8K_-9f4legB673gAaAf4WxV58K9gPOjnpn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098278262</pqid></control><display><type>article</type><title>Contrasting Multi-Source Temporal Knowledge Graphs for Biomedical Hypothesis Generation</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Huiwei ; Li, Wenchu ; Yao, Weihong ; Lin, Yingyu ; Du, Lei</creator><creatorcontrib>Zhou, Huiwei ; Li, Wenchu ; Yao, Weihong ; Lin, Yingyu ; Du, Lei</creatorcontrib><description>Hypothesis Generation (HG) aims to expedite biomedical researches by generating novel hypotheses from existing scientific literature. Most existing studies focused on modeling static snapshots of the corpus, neglecting the temporal evolution of scientific terms. Despite recent efforts to learn term evolution from Knowledge Bases (KBs) for HG, the temporal information from multi-source KBs is still overlooked, which contains important, up-to-date knowledge. In this paper, an innovative Temporal Contrastive Learning (TCL) framework is introduced to uncover latent associations between entities by jointly modeling their co-evolution across multi-source temporal KBs. Specifically, we first construct a temporal relation graph based on PubMed papers and a biomedical relation database (such as Comparative Toxicogenomics Database (CTD)). Then the constructed temporal relation graph and a temporal concept graph (such as Medical Subject Headings (MeSH)) are used to train two GCN-based recurrent networks for learning the entity temporal evolutional embeddings, respectively. Finally, a cross-view temporal prediction task is designed for learning knowledge enriched temporal embeddings by contrasting the temporal embeddings learned from the two Temporal Knowledge Graphs (TKGs). Findings from experiments conducted on three real-world biomedical term relationship datasets demonstrate that the proposed approach is clearly superior to approaches based on single TKG, achieving the state-of-the-art performance.</description><identifier>ISSN: 1545-5963</identifier><identifier>ISSN: 1557-9964</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2024.3451051</identifier><identifier>PMID: 39196748</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biological system modeling ; Cardiovascular diseases ; co-evolution ; Computational modeling ; Contrastive learning ; Evolution (biology) ; Hypertension ; Hypothesis generation (HG) ; Knowledge based systems ; temporal contrastive learning (TCL) ; temporal knowledge graph (TKG)</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2024-11, Vol.21 (6), p.2102-2112</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8562-129X ; 0000-0002-7766-4177 ; 0009-0006-3301-5147 ; 0009-0002-3145-3494 ; 0009-0009-6704-5573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10654589$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10654589$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39196748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Huiwei</creatorcontrib><creatorcontrib>Li, Wenchu</creatorcontrib><creatorcontrib>Yao, Weihong</creatorcontrib><creatorcontrib>Lin, Yingyu</creatorcontrib><creatorcontrib>Du, Lei</creatorcontrib><title>Contrasting Multi-Source Temporal Knowledge Graphs for Biomedical Hypothesis Generation</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Hypothesis Generation (HG) aims to expedite biomedical researches by generating novel hypotheses from existing scientific literature. Most existing studies focused on modeling static snapshots of the corpus, neglecting the temporal evolution of scientific terms. Despite recent efforts to learn term evolution from Knowledge Bases (KBs) for HG, the temporal information from multi-source KBs is still overlooked, which contains important, up-to-date knowledge. In this paper, an innovative Temporal Contrastive Learning (TCL) framework is introduced to uncover latent associations between entities by jointly modeling their co-evolution across multi-source temporal KBs. Specifically, we first construct a temporal relation graph based on PubMed papers and a biomedical relation database (such as Comparative Toxicogenomics Database (CTD)). Then the constructed temporal relation graph and a temporal concept graph (such as Medical Subject Headings (MeSH)) are used to train two GCN-based recurrent networks for learning the entity temporal evolutional embeddings, respectively. Finally, a cross-view temporal prediction task is designed for learning knowledge enriched temporal embeddings by contrasting the temporal embeddings learned from the two Temporal Knowledge Graphs (TKGs). Findings from experiments conducted on three real-world biomedical term relationship datasets demonstrate that the proposed approach is clearly superior to approaches based on single TKG, achieving the state-of-the-art performance.</description><subject>Biological system modeling</subject><subject>Cardiovascular diseases</subject><subject>co-evolution</subject><subject>Computational modeling</subject><subject>Contrastive learning</subject><subject>Evolution (biology)</subject><subject>Hypertension</subject><subject>Hypothesis generation (HG)</subject><subject>Knowledge based systems</subject><subject>temporal contrastive learning (TCL)</subject><subject>temporal knowledge graph (TKG)</subject><issn>1545-5963</issn><issn>1557-9964</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRrFZ_gCCSo5fU_crHHm3QVqx4sOIxbJLZdiXJxt0E6b93Q6t4moF53hfmQeiK4BkhWNyts_l8RjHlM8YjgiNyhM5IFCWhEDE_HncehZGI2QSdO_eJPSkwP0UTJoiIE56eoY_MtL2VrtftJngZ6l6Hb2awJQRraDpjZR08t-a7hmoDwcLKbusCZWww16aBSpf-vtx1pt-C0y5YQAtW9tq0F-hEydrB5WFO0fvjwzpbhqvXxVN2vwpLinkfclalqkxLAVikspAFFXEkKCYVcCz9V1wxHIGo0oRXQAiFlBOcyEQxBYWSbIpu972dNV8DuD5vtCuhrmULZnA58700SWlMPUr2aGmNcxZU3lndSLvLCc5Hn_noMx995gefPnNzqB8K_-9f4legB673gAaAf4WxV58K9gPOjnpn</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Zhou, Huiwei</creator><creator>Li, Wenchu</creator><creator>Yao, Weihong</creator><creator>Lin, Yingyu</creator><creator>Du, Lei</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8562-129X</orcidid><orcidid>https://orcid.org/0000-0002-7766-4177</orcidid><orcidid>https://orcid.org/0009-0006-3301-5147</orcidid><orcidid>https://orcid.org/0009-0002-3145-3494</orcidid><orcidid>https://orcid.org/0009-0009-6704-5573</orcidid></search><sort><creationdate>20241101</creationdate><title>Contrasting Multi-Source Temporal Knowledge Graphs for Biomedical Hypothesis Generation</title><author>Zhou, Huiwei ; Li, Wenchu ; Yao, Weihong ; Lin, Yingyu ; Du, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204t-43d8fc8c9e098abab29659201de40a3454f305e9d874de112e84107a7f3febfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological system modeling</topic><topic>Cardiovascular diseases</topic><topic>co-evolution</topic><topic>Computational modeling</topic><topic>Contrastive learning</topic><topic>Evolution (biology)</topic><topic>Hypertension</topic><topic>Hypothesis generation (HG)</topic><topic>Knowledge based systems</topic><topic>temporal contrastive learning (TCL)</topic><topic>temporal knowledge graph (TKG)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Huiwei</creatorcontrib><creatorcontrib>Li, Wenchu</creatorcontrib><creatorcontrib>Yao, Weihong</creatorcontrib><creatorcontrib>Lin, Yingyu</creatorcontrib><creatorcontrib>Du, Lei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Huiwei</au><au>Li, Wenchu</au><au>Yao, Weihong</au><au>Lin, Yingyu</au><au>Du, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contrasting Multi-Source Temporal Knowledge Graphs for Biomedical Hypothesis Generation</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>21</volume><issue>6</issue><spage>2102</spage><epage>2112</epage><pages>2102-2112</pages><issn>1545-5963</issn><issn>1557-9964</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Hypothesis Generation (HG) aims to expedite biomedical researches by generating novel hypotheses from existing scientific literature. Most existing studies focused on modeling static snapshots of the corpus, neglecting the temporal evolution of scientific terms. Despite recent efforts to learn term evolution from Knowledge Bases (KBs) for HG, the temporal information from multi-source KBs is still overlooked, which contains important, up-to-date knowledge. In this paper, an innovative Temporal Contrastive Learning (TCL) framework is introduced to uncover latent associations between entities by jointly modeling their co-evolution across multi-source temporal KBs. Specifically, we first construct a temporal relation graph based on PubMed papers and a biomedical relation database (such as Comparative Toxicogenomics Database (CTD)). Then the constructed temporal relation graph and a temporal concept graph (such as Medical Subject Headings (MeSH)) are used to train two GCN-based recurrent networks for learning the entity temporal evolutional embeddings, respectively. Finally, a cross-view temporal prediction task is designed for learning knowledge enriched temporal embeddings by contrasting the temporal embeddings learned from the two Temporal Knowledge Graphs (TKGs). Findings from experiments conducted on three real-world biomedical term relationship datasets demonstrate that the proposed approach is clearly superior to approaches based on single TKG, achieving the state-of-the-art performance.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39196748</pmid><doi>10.1109/TCBB.2024.3451051</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8562-129X</orcidid><orcidid>https://orcid.org/0000-0002-7766-4177</orcidid><orcidid>https://orcid.org/0009-0006-3301-5147</orcidid><orcidid>https://orcid.org/0009-0002-3145-3494</orcidid><orcidid>https://orcid.org/0009-0009-6704-5573</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5963 |
ispartof | IEEE/ACM transactions on computational biology and bioinformatics, 2024-11, Vol.21 (6), p.2102-2112 |
issn | 1545-5963 1557-9964 1557-9964 |
language | eng |
recordid | cdi_proquest_miscellaneous_3098278262 |
source | IEEE Electronic Library (IEL) |
subjects | Biological system modeling Cardiovascular diseases co-evolution Computational modeling Contrastive learning Evolution (biology) Hypertension Hypothesis generation (HG) Knowledge based systems temporal contrastive learning (TCL) temporal knowledge graph (TKG) |
title | Contrasting Multi-Source Temporal Knowledge Graphs for Biomedical Hypothesis Generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contrasting%20Multi-Source%20Temporal%20Knowledge%20Graphs%20for%20Biomedical%20Hypothesis%20Generation&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Zhou,%20Huiwei&rft.date=2024-11-01&rft.volume=21&rft.issue=6&rft.spage=2102&rft.epage=2112&rft.pages=2102-2112&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2024.3451051&rft_dat=%3Cproquest_RIE%3E3098278262%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098278262&rft_id=info:pmid/39196748&rft_ieee_id=10654589&rfr_iscdi=true |