MCM8-mediated mitophagy protects vascular health in response to nitric oxide signaling in a mouse model of Kawasaki disease

Mitophagy is a major quality control pathway that removes unwanted or dysfunctional mitochondria and plays an essential role in vascular health. Here we show that MCM8 expression is significantly decreased in children with Kawasaki disease (KD) who developed coronary artery aneurysms. Mechanisticall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature Cardiovascular Research 2023-08, Vol.2 (8), p.778-792
Hauptverfasser: Lin, Meng, Xian, Huifang, Chen, Zhanghua, Wang, Shang, Liu, Ming, Liang, Weiwei, Tang, Qin, Liu, Yao, Huang, Wanming, Che, Di, Guo, Caiqin, Idiiatullina, Elina, Fang, Rongli, Al-Azab, Mahmoud, Chang, Jingjie, Wang, Rongze, Li, Xiaojun, Zuo, Xiaoyu, Zhang, Yan, Zhao, Jincun, Tang, Yaping, Jin, Shouheng, He, Zhengjie, Feng, Du, Lu, Liwei, Zhang, Kang, Wu, Yan, Bai, Fan, Lew, Andrew M, Cui, Jun, Wu, Yuzhang, Gu, Xiaoqiong, Zhang, Yuxia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 792
container_issue 8
container_start_page 778
container_title Nature Cardiovascular Research
container_volume 2
creator Lin, Meng
Xian, Huifang
Chen, Zhanghua
Wang, Shang
Liu, Ming
Liang, Weiwei
Tang, Qin
Liu, Yao
Huang, Wanming
Che, Di
Guo, Caiqin
Idiiatullina, Elina
Fang, Rongli
Al-Azab, Mahmoud
Chang, Jingjie
Wang, Rongze
Li, Xiaojun
Zuo, Xiaoyu
Zhang, Yan
Zhao, Jincun
Tang, Yaping
Jin, Shouheng
He, Zhengjie
Feng, Du
Lu, Liwei
Zhang, Kang
Wu, Yan
Bai, Fan
Lew, Andrew M
Cui, Jun
Wu, Yuzhang
Gu, Xiaoqiong
Zhang, Yuxia
description Mitophagy is a major quality control pathway that removes unwanted or dysfunctional mitochondria and plays an essential role in vascular health. Here we show that MCM8 expression is significantly decreased in children with Kawasaki disease (KD) who developed coronary artery aneurysms. Mechanistically, we discovered that nitric oxide signaling promotes TRIM21-mediated MCM8 ubiquitination, which disrupts its interaction with MCM9 and promotes its cytosolic export. In the cytosol, MCM8 relocates to the mitochondria pore-forming proteins and promotes their ubiquitination by TRIM21. In addition, MCM8 directly recruits LC3 via its LC3-interacting region (LIR) motif and initiates mitophagy. This suppresses mitochondrial DNA-mediated activation of type I interferon via cGAS and STING. Mice that are deficient in Mcm8, Trim21 and Nos2 or reconstituted with the East-Asian-specific MCM8-P276 variant develop more severe coronary artery vasculopathy in the Lactobacillus casei extract-induced KD model. Collectively, the data suggest that MCM8 protects vascular health in the KD setting.
doi_str_mv 10.1038/s44161-023-00314-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3097854323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097854323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-99c7c35a4139d82295e34ac009882a50e179eb955447b42050b40056bba3bcf63</originalsourceid><addsrcrecordid>eNpNkE1v1DAQhq0K1Falf4BD5SOXlLHHTuIjWvFR0aoXOFsTZ3bXahIvsRe26p8nZQviNKPR845mHiHeKrhWgO37bIyqVQUaKwBUpjqciHPd4DKyDl7915-Jy5xjB6bWrW2wORVn6JSzrnbn4uludddWI_eRCvdyjCXttrR5lLs5FQ4ly5-Uw36gWW6ZhrKVcZIz512aMsuS5BTLHINMh9izzHEz0RCnzTNFckz7BRpTz4NMa_mVflGmhyj7mJkyvxGv1zRkvnypF-L7p4_fVl-q2_vPN6sPt1VAwFI5F5qAloxC17daO8toKAC4ttVkgVXjuHPWGtN0RoOFzgDYuusIu7Cu8UK8O-5dfvqx51z8GHPgYaCJlws9gmtaa1DjguojGuaU88xrv5vjSPOjV-Cfvfujd79493-8-8MSunrZv-8Wk_8ify3jbyuNfsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097854323</pqid></control><display><type>article</type><title>MCM8-mediated mitophagy protects vascular health in response to nitric oxide signaling in a mouse model of Kawasaki disease</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Lin, Meng ; Xian, Huifang ; Chen, Zhanghua ; Wang, Shang ; Liu, Ming ; Liang, Weiwei ; Tang, Qin ; Liu, Yao ; Huang, Wanming ; Che, Di ; Guo, Caiqin ; Idiiatullina, Elina ; Fang, Rongli ; Al-Azab, Mahmoud ; Chang, Jingjie ; Wang, Rongze ; Li, Xiaojun ; Zuo, Xiaoyu ; Zhang, Yan ; Zhao, Jincun ; Tang, Yaping ; Jin, Shouheng ; He, Zhengjie ; Feng, Du ; Lu, Liwei ; Zhang, Kang ; Wu, Yan ; Bai, Fan ; Lew, Andrew M ; Cui, Jun ; Wu, Yuzhang ; Gu, Xiaoqiong ; Zhang, Yuxia</creator><creatorcontrib>Lin, Meng ; Xian, Huifang ; Chen, Zhanghua ; Wang, Shang ; Liu, Ming ; Liang, Weiwei ; Tang, Qin ; Liu, Yao ; Huang, Wanming ; Che, Di ; Guo, Caiqin ; Idiiatullina, Elina ; Fang, Rongli ; Al-Azab, Mahmoud ; Chang, Jingjie ; Wang, Rongze ; Li, Xiaojun ; Zuo, Xiaoyu ; Zhang, Yan ; Zhao, Jincun ; Tang, Yaping ; Jin, Shouheng ; He, Zhengjie ; Feng, Du ; Lu, Liwei ; Zhang, Kang ; Wu, Yan ; Bai, Fan ; Lew, Andrew M ; Cui, Jun ; Wu, Yuzhang ; Gu, Xiaoqiong ; Zhang, Yuxia</creatorcontrib><description>Mitophagy is a major quality control pathway that removes unwanted or dysfunctional mitochondria and plays an essential role in vascular health. Here we show that MCM8 expression is significantly decreased in children with Kawasaki disease (KD) who developed coronary artery aneurysms. Mechanistically, we discovered that nitric oxide signaling promotes TRIM21-mediated MCM8 ubiquitination, which disrupts its interaction with MCM9 and promotes its cytosolic export. In the cytosol, MCM8 relocates to the mitochondria pore-forming proteins and promotes their ubiquitination by TRIM21. In addition, MCM8 directly recruits LC3 via its LC3-interacting region (LIR) motif and initiates mitophagy. This suppresses mitochondrial DNA-mediated activation of type I interferon via cGAS and STING. Mice that are deficient in Mcm8, Trim21 and Nos2 or reconstituted with the East-Asian-specific MCM8-P276 variant develop more severe coronary artery vasculopathy in the Lactobacillus casei extract-induced KD model. Collectively, the data suggest that MCM8 protects vascular health in the KD setting.</description><identifier>ISSN: 2731-0590</identifier><identifier>EISSN: 2731-0590</identifier><identifier>DOI: 10.1038/s44161-023-00314-x</identifier><identifier>PMID: 39195969</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Disease Models, Animal ; Female ; Humans ; Male ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Minichromosome Maintenance Proteins - genetics ; Minichromosome Maintenance Proteins - metabolism ; Mitophagy ; Mucocutaneous Lymph Node Syndrome - genetics ; Mucocutaneous Lymph Node Syndrome - metabolism ; Mucocutaneous Lymph Node Syndrome - pathology ; Nitric Oxide - metabolism ; Nucleotidyltransferases - genetics ; Nucleotidyltransferases - metabolism ; Signal Transduction ; Ubiquitination</subject><ispartof>Nature Cardiovascular Research, 2023-08, Vol.2 (8), p.778-792</ispartof><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-99c7c35a4139d82295e34ac009882a50e179eb955447b42050b40056bba3bcf63</citedby><cites>FETCH-LOGICAL-c303t-99c7c35a4139d82295e34ac009882a50e179eb955447b42050b40056bba3bcf63</cites><orcidid>0000-0002-9558-4226 ; 0000-0003-2515-5589 ; 0000-0001-5324-2896 ; 0000-0002-0445-4072 ; 0000-0001-6119-8936 ; 0000-0002-2728-2859 ; 0000-0002-2489-4702 ; 0000-0002-3191-6746 ; 0000-0003-1900-0249 ; 0000-0002-8634-0967 ; 0000-0002-2505-0675 ; 0000-0002-4549-1697 ; 0000-0002-4049-0214 ; 0000-0002-8000-3708 ; 0000-0003-2715-0925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39195969$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Meng</creatorcontrib><creatorcontrib>Xian, Huifang</creatorcontrib><creatorcontrib>Chen, Zhanghua</creatorcontrib><creatorcontrib>Wang, Shang</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Liang, Weiwei</creatorcontrib><creatorcontrib>Tang, Qin</creatorcontrib><creatorcontrib>Liu, Yao</creatorcontrib><creatorcontrib>Huang, Wanming</creatorcontrib><creatorcontrib>Che, Di</creatorcontrib><creatorcontrib>Guo, Caiqin</creatorcontrib><creatorcontrib>Idiiatullina, Elina</creatorcontrib><creatorcontrib>Fang, Rongli</creatorcontrib><creatorcontrib>Al-Azab, Mahmoud</creatorcontrib><creatorcontrib>Chang, Jingjie</creatorcontrib><creatorcontrib>Wang, Rongze</creatorcontrib><creatorcontrib>Li, Xiaojun</creatorcontrib><creatorcontrib>Zuo, Xiaoyu</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Zhao, Jincun</creatorcontrib><creatorcontrib>Tang, Yaping</creatorcontrib><creatorcontrib>Jin, Shouheng</creatorcontrib><creatorcontrib>He, Zhengjie</creatorcontrib><creatorcontrib>Feng, Du</creatorcontrib><creatorcontrib>Lu, Liwei</creatorcontrib><creatorcontrib>Zhang, Kang</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Bai, Fan</creatorcontrib><creatorcontrib>Lew, Andrew M</creatorcontrib><creatorcontrib>Cui, Jun</creatorcontrib><creatorcontrib>Wu, Yuzhang</creatorcontrib><creatorcontrib>Gu, Xiaoqiong</creatorcontrib><creatorcontrib>Zhang, Yuxia</creatorcontrib><title>MCM8-mediated mitophagy protects vascular health in response to nitric oxide signaling in a mouse model of Kawasaki disease</title><title>Nature Cardiovascular Research</title><addtitle>Nat Cardiovasc Res</addtitle><description>Mitophagy is a major quality control pathway that removes unwanted or dysfunctional mitochondria and plays an essential role in vascular health. Here we show that MCM8 expression is significantly decreased in children with Kawasaki disease (KD) who developed coronary artery aneurysms. Mechanistically, we discovered that nitric oxide signaling promotes TRIM21-mediated MCM8 ubiquitination, which disrupts its interaction with MCM9 and promotes its cytosolic export. In the cytosol, MCM8 relocates to the mitochondria pore-forming proteins and promotes their ubiquitination by TRIM21. In addition, MCM8 directly recruits LC3 via its LC3-interacting region (LIR) motif and initiates mitophagy. This suppresses mitochondrial DNA-mediated activation of type I interferon via cGAS and STING. Mice that are deficient in Mcm8, Trim21 and Nos2 or reconstituted with the East-Asian-specific MCM8-P276 variant develop more severe coronary artery vasculopathy in the Lactobacillus casei extract-induced KD model. Collectively, the data suggest that MCM8 protects vascular health in the KD setting.</description><subject>Animals</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Minichromosome Maintenance Proteins - genetics</subject><subject>Minichromosome Maintenance Proteins - metabolism</subject><subject>Mitophagy</subject><subject>Mucocutaneous Lymph Node Syndrome - genetics</subject><subject>Mucocutaneous Lymph Node Syndrome - metabolism</subject><subject>Mucocutaneous Lymph Node Syndrome - pathology</subject><subject>Nitric Oxide - metabolism</subject><subject>Nucleotidyltransferases - genetics</subject><subject>Nucleotidyltransferases - metabolism</subject><subject>Signal Transduction</subject><subject>Ubiquitination</subject><issn>2731-0590</issn><issn>2731-0590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkE1v1DAQhq0K1Falf4BD5SOXlLHHTuIjWvFR0aoXOFsTZ3bXahIvsRe26p8nZQviNKPR845mHiHeKrhWgO37bIyqVQUaKwBUpjqciHPd4DKyDl7915-Jy5xjB6bWrW2wORVn6JSzrnbn4uludddWI_eRCvdyjCXttrR5lLs5FQ4ly5-Uw36gWW6ZhrKVcZIz512aMsuS5BTLHINMh9izzHEz0RCnzTNFckz7BRpTz4NMa_mVflGmhyj7mJkyvxGv1zRkvnypF-L7p4_fVl-q2_vPN6sPt1VAwFI5F5qAloxC17daO8toKAC4ttVkgVXjuHPWGtN0RoOFzgDYuusIu7Cu8UK8O-5dfvqx51z8GHPgYaCJlws9gmtaa1DjguojGuaU88xrv5vjSPOjV-Cfvfujd79493-8-8MSunrZv-8Wk_8ify3jbyuNfsw</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Lin, Meng</creator><creator>Xian, Huifang</creator><creator>Chen, Zhanghua</creator><creator>Wang, Shang</creator><creator>Liu, Ming</creator><creator>Liang, Weiwei</creator><creator>Tang, Qin</creator><creator>Liu, Yao</creator><creator>Huang, Wanming</creator><creator>Che, Di</creator><creator>Guo, Caiqin</creator><creator>Idiiatullina, Elina</creator><creator>Fang, Rongli</creator><creator>Al-Azab, Mahmoud</creator><creator>Chang, Jingjie</creator><creator>Wang, Rongze</creator><creator>Li, Xiaojun</creator><creator>Zuo, Xiaoyu</creator><creator>Zhang, Yan</creator><creator>Zhao, Jincun</creator><creator>Tang, Yaping</creator><creator>Jin, Shouheng</creator><creator>He, Zhengjie</creator><creator>Feng, Du</creator><creator>Lu, Liwei</creator><creator>Zhang, Kang</creator><creator>Wu, Yan</creator><creator>Bai, Fan</creator><creator>Lew, Andrew M</creator><creator>Cui, Jun</creator><creator>Wu, Yuzhang</creator><creator>Gu, Xiaoqiong</creator><creator>Zhang, Yuxia</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9558-4226</orcidid><orcidid>https://orcid.org/0000-0003-2515-5589</orcidid><orcidid>https://orcid.org/0000-0001-5324-2896</orcidid><orcidid>https://orcid.org/0000-0002-0445-4072</orcidid><orcidid>https://orcid.org/0000-0001-6119-8936</orcidid><orcidid>https://orcid.org/0000-0002-2728-2859</orcidid><orcidid>https://orcid.org/0000-0002-2489-4702</orcidid><orcidid>https://orcid.org/0000-0002-3191-6746</orcidid><orcidid>https://orcid.org/0000-0003-1900-0249</orcidid><orcidid>https://orcid.org/0000-0002-8634-0967</orcidid><orcidid>https://orcid.org/0000-0002-2505-0675</orcidid><orcidid>https://orcid.org/0000-0002-4549-1697</orcidid><orcidid>https://orcid.org/0000-0002-4049-0214</orcidid><orcidid>https://orcid.org/0000-0002-8000-3708</orcidid><orcidid>https://orcid.org/0000-0003-2715-0925</orcidid></search><sort><creationdate>20230801</creationdate><title>MCM8-mediated mitophagy protects vascular health in response to nitric oxide signaling in a mouse model of Kawasaki disease</title><author>Lin, Meng ; Xian, Huifang ; Chen, Zhanghua ; Wang, Shang ; Liu, Ming ; Liang, Weiwei ; Tang, Qin ; Liu, Yao ; Huang, Wanming ; Che, Di ; Guo, Caiqin ; Idiiatullina, Elina ; Fang, Rongli ; Al-Azab, Mahmoud ; Chang, Jingjie ; Wang, Rongze ; Li, Xiaojun ; Zuo, Xiaoyu ; Zhang, Yan ; Zhao, Jincun ; Tang, Yaping ; Jin, Shouheng ; He, Zhengjie ; Feng, Du ; Lu, Liwei ; Zhang, Kang ; Wu, Yan ; Bai, Fan ; Lew, Andrew M ; Cui, Jun ; Wu, Yuzhang ; Gu, Xiaoqiong ; Zhang, Yuxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-99c7c35a4139d82295e34ac009882a50e179eb955447b42050b40056bba3bcf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Minichromosome Maintenance Proteins - genetics</topic><topic>Minichromosome Maintenance Proteins - metabolism</topic><topic>Mitophagy</topic><topic>Mucocutaneous Lymph Node Syndrome - genetics</topic><topic>Mucocutaneous Lymph Node Syndrome - metabolism</topic><topic>Mucocutaneous Lymph Node Syndrome - pathology</topic><topic>Nitric Oxide - metabolism</topic><topic>Nucleotidyltransferases - genetics</topic><topic>Nucleotidyltransferases - metabolism</topic><topic>Signal Transduction</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Meng</creatorcontrib><creatorcontrib>Xian, Huifang</creatorcontrib><creatorcontrib>Chen, Zhanghua</creatorcontrib><creatorcontrib>Wang, Shang</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Liang, Weiwei</creatorcontrib><creatorcontrib>Tang, Qin</creatorcontrib><creatorcontrib>Liu, Yao</creatorcontrib><creatorcontrib>Huang, Wanming</creatorcontrib><creatorcontrib>Che, Di</creatorcontrib><creatorcontrib>Guo, Caiqin</creatorcontrib><creatorcontrib>Idiiatullina, Elina</creatorcontrib><creatorcontrib>Fang, Rongli</creatorcontrib><creatorcontrib>Al-Azab, Mahmoud</creatorcontrib><creatorcontrib>Chang, Jingjie</creatorcontrib><creatorcontrib>Wang, Rongze</creatorcontrib><creatorcontrib>Li, Xiaojun</creatorcontrib><creatorcontrib>Zuo, Xiaoyu</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Zhao, Jincun</creatorcontrib><creatorcontrib>Tang, Yaping</creatorcontrib><creatorcontrib>Jin, Shouheng</creatorcontrib><creatorcontrib>He, Zhengjie</creatorcontrib><creatorcontrib>Feng, Du</creatorcontrib><creatorcontrib>Lu, Liwei</creatorcontrib><creatorcontrib>Zhang, Kang</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Bai, Fan</creatorcontrib><creatorcontrib>Lew, Andrew M</creatorcontrib><creatorcontrib>Cui, Jun</creatorcontrib><creatorcontrib>Wu, Yuzhang</creatorcontrib><creatorcontrib>Gu, Xiaoqiong</creatorcontrib><creatorcontrib>Zhang, Yuxia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature Cardiovascular Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Meng</au><au>Xian, Huifang</au><au>Chen, Zhanghua</au><au>Wang, Shang</au><au>Liu, Ming</au><au>Liang, Weiwei</au><au>Tang, Qin</au><au>Liu, Yao</au><au>Huang, Wanming</au><au>Che, Di</au><au>Guo, Caiqin</au><au>Idiiatullina, Elina</au><au>Fang, Rongli</au><au>Al-Azab, Mahmoud</au><au>Chang, Jingjie</au><au>Wang, Rongze</au><au>Li, Xiaojun</au><au>Zuo, Xiaoyu</au><au>Zhang, Yan</au><au>Zhao, Jincun</au><au>Tang, Yaping</au><au>Jin, Shouheng</au><au>He, Zhengjie</au><au>Feng, Du</au><au>Lu, Liwei</au><au>Zhang, Kang</au><au>Wu, Yan</au><au>Bai, Fan</au><au>Lew, Andrew M</au><au>Cui, Jun</au><au>Wu, Yuzhang</au><au>Gu, Xiaoqiong</au><au>Zhang, Yuxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MCM8-mediated mitophagy protects vascular health in response to nitric oxide signaling in a mouse model of Kawasaki disease</atitle><jtitle>Nature Cardiovascular Research</jtitle><addtitle>Nat Cardiovasc Res</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>2</volume><issue>8</issue><spage>778</spage><epage>792</epage><pages>778-792</pages><issn>2731-0590</issn><eissn>2731-0590</eissn><abstract>Mitophagy is a major quality control pathway that removes unwanted or dysfunctional mitochondria and plays an essential role in vascular health. Here we show that MCM8 expression is significantly decreased in children with Kawasaki disease (KD) who developed coronary artery aneurysms. Mechanistically, we discovered that nitric oxide signaling promotes TRIM21-mediated MCM8 ubiquitination, which disrupts its interaction with MCM9 and promotes its cytosolic export. In the cytosol, MCM8 relocates to the mitochondria pore-forming proteins and promotes their ubiquitination by TRIM21. In addition, MCM8 directly recruits LC3 via its LC3-interacting region (LIR) motif and initiates mitophagy. This suppresses mitochondrial DNA-mediated activation of type I interferon via cGAS and STING. Mice that are deficient in Mcm8, Trim21 and Nos2 or reconstituted with the East-Asian-specific MCM8-P276 variant develop more severe coronary artery vasculopathy in the Lactobacillus casei extract-induced KD model. Collectively, the data suggest that MCM8 protects vascular health in the KD setting.</abstract><cop>England</cop><pmid>39195969</pmid><doi>10.1038/s44161-023-00314-x</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9558-4226</orcidid><orcidid>https://orcid.org/0000-0003-2515-5589</orcidid><orcidid>https://orcid.org/0000-0001-5324-2896</orcidid><orcidid>https://orcid.org/0000-0002-0445-4072</orcidid><orcidid>https://orcid.org/0000-0001-6119-8936</orcidid><orcidid>https://orcid.org/0000-0002-2728-2859</orcidid><orcidid>https://orcid.org/0000-0002-2489-4702</orcidid><orcidid>https://orcid.org/0000-0002-3191-6746</orcidid><orcidid>https://orcid.org/0000-0003-1900-0249</orcidid><orcidid>https://orcid.org/0000-0002-8634-0967</orcidid><orcidid>https://orcid.org/0000-0002-2505-0675</orcidid><orcidid>https://orcid.org/0000-0002-4549-1697</orcidid><orcidid>https://orcid.org/0000-0002-4049-0214</orcidid><orcidid>https://orcid.org/0000-0002-8000-3708</orcidid><orcidid>https://orcid.org/0000-0003-2715-0925</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2731-0590
ispartof Nature Cardiovascular Research, 2023-08, Vol.2 (8), p.778-792
issn 2731-0590
2731-0590
language eng
recordid cdi_proquest_miscellaneous_3097854323
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animals
Disease Models, Animal
Female
Humans
Male
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Minichromosome Maintenance Proteins - genetics
Minichromosome Maintenance Proteins - metabolism
Mitophagy
Mucocutaneous Lymph Node Syndrome - genetics
Mucocutaneous Lymph Node Syndrome - metabolism
Mucocutaneous Lymph Node Syndrome - pathology
Nitric Oxide - metabolism
Nucleotidyltransferases - genetics
Nucleotidyltransferases - metabolism
Signal Transduction
Ubiquitination
title MCM8-mediated mitophagy protects vascular health in response to nitric oxide signaling in a mouse model of Kawasaki disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MCM8-mediated%20mitophagy%20protects%20vascular%20health%20in%20response%20to%20nitric%20oxide%20signaling%20in%20a%20mouse%20model%20of%20Kawasaki%20disease&rft.jtitle=Nature%20Cardiovascular%20Research&rft.au=Lin,%20Meng&rft.date=2023-08-01&rft.volume=2&rft.issue=8&rft.spage=778&rft.epage=792&rft.pages=778-792&rft.issn=2731-0590&rft.eissn=2731-0590&rft_id=info:doi/10.1038/s44161-023-00314-x&rft_dat=%3Cproquest_cross%3E3097854323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097854323&rft_id=info:pmid/39195969&rfr_iscdi=true