CPred: Charge State Prediction for Modified and Unmodified Peptides in Electrospray Ionization
The mass-to-charge ratio serves as a critical parameter in peptide identification via mass spectrometry, enabling the precise determination of peptide masses and facilitating their differentiation based on unique charge characteristics, especially when peptides are ionized by tools like electrospray...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2024-09, Vol.96 (36), p.14382-14392 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14392 |
---|---|
container_issue | 36 |
container_start_page | 14382 |
container_title | Analytical chemistry (Washington) |
container_volume | 96 |
creator | Vilenne, Frédérique Agten, Annelies Appeltans, Simon Ertaylan, Gökhan Valkenborg, Dirk |
description | The mass-to-charge ratio serves as a critical parameter in peptide identification via mass spectrometry, enabling the precise determination of peptide masses and facilitating their differentiation based on unique charge characteristics, especially when peptides are ionized by tools like electrospray ionization, which produces multiply charged ions. We developed a neural network called CPred, which can accurately predict the charge state distribution from +1 to +7 for the modified and unmodified peptides. CPred was trained on the large-scale synthetic training data, consisting of tryptic and non-tryptic peptides, and various fragmentation methods. The model was further evaluated on independent, external test data sets. Results were evaluated through the Pearson correlation coefficient and showed high correlations of up to 0.9997117 between the predicted and acquired charge state distributions. The effect of specifying modifications in the neural network and feature importance was further investigated, revealing the value of modifications and vital peptide properties in holding on to protons. CPreds’ accurate predictions of the charge state distribution can play an essential role in boosting confidence in peptide identifications during rescoring as a novel feature. |
doi_str_mv | 10.1021/acs.analchem.4c01107 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3097495641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106242789</sourcerecordid><originalsourceid>FETCH-LOGICAL-a255t-e3bea5f4e7f59ae8417e4eb5f4664a15037ee1855770ffeb4b090260182724263</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouq7-A5GAFy9dJ2nStN5kWXVBUVCvlrSdupF-mbQH_fWm7MfBg6chw_O-Qx5CzhjMGHB2pXM3042u8hXWM5EDY6D2yIRJDkEUx3yfTAAgDLgCOCLHzn3CyLDokByFCYsTweWEvM-fLRbXdL7S9gPpS697pOPK5L1pG1q2lj62hSkNFlQ3BX1r6u3zGbveFOioaeiiwry3reus_qbLtjE_esyfkINSVw5PN3NK3m4Xr_P74OHpbjm_eQg0l7IPMMxQy1KgKmWiMRZMocDMb6JIaCYhVIgsllIpKEvMRAYJ8AhYzBUXPAqn5HLd29n2a0DXp7VxOVaVbrAdXBpCokQiI8E8evEH_WwH60V6ikHk61SceEqsqdx_ylks086aWtvvlEE6-k-9_3TrP93497HzTfmQ1VjsQlvhHoA1MMZ3h__t_AW1RZNd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106242789</pqid></control><display><type>article</type><title>CPred: Charge State Prediction for Modified and Unmodified Peptides in Electrospray Ionization</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Vilenne, Frédérique ; Agten, Annelies ; Appeltans, Simon ; Ertaylan, Gökhan ; Valkenborg, Dirk</creator><creatorcontrib>Vilenne, Frédérique ; Agten, Annelies ; Appeltans, Simon ; Ertaylan, Gökhan ; Valkenborg, Dirk</creatorcontrib><description>The mass-to-charge ratio serves as a critical parameter in peptide identification via mass spectrometry, enabling the precise determination of peptide masses and facilitating their differentiation based on unique charge characteristics, especially when peptides are ionized by tools like electrospray ionization, which produces multiply charged ions. We developed a neural network called CPred, which can accurately predict the charge state distribution from +1 to +7 for the modified and unmodified peptides. CPred was trained on the large-scale synthetic training data, consisting of tryptic and non-tryptic peptides, and various fragmentation methods. The model was further evaluated on independent, external test data sets. Results were evaluated through the Pearson correlation coefficient and showed high correlations of up to 0.9997117 between the predicted and acquired charge state distributions. The effect of specifying modifications in the neural network and feature importance was further investigated, revealing the value of modifications and vital peptide properties in holding on to protons. CPreds’ accurate predictions of the charge state distribution can play an essential role in boosting confidence in peptide identifications during rescoring as a novel feature.</description><identifier>ISSN: 0003-2700</identifier><identifier>ISSN: 1520-6882</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.4c01107</identifier><identifier>PMID: 39189425</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Correlation coefficient ; Correlation coefficients ; Data acquisition ; Electrospraying ; Ionization ; Mass spectrometry ; Mass spectroscopy ; Neural networks ; Neural Networks, Computer ; Parameter identification ; Parameter modification ; Peptides ; Peptides - analysis ; Peptides - chemistry ; Predictions ; Protons ; Spectrometry, Mass, Electrospray Ionization - methods ; Tryptic peptides</subject><ispartof>Analytical chemistry (Washington), 2024-09, Vol.96 (36), p.14382-14392</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 10, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a255t-e3bea5f4e7f59ae8417e4eb5f4664a15037ee1855770ffeb4b090260182724263</cites><orcidid>0000-0002-6066-9035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.4c01107$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.4c01107$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39189425$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vilenne, Frédérique</creatorcontrib><creatorcontrib>Agten, Annelies</creatorcontrib><creatorcontrib>Appeltans, Simon</creatorcontrib><creatorcontrib>Ertaylan, Gökhan</creatorcontrib><creatorcontrib>Valkenborg, Dirk</creatorcontrib><title>CPred: Charge State Prediction for Modified and Unmodified Peptides in Electrospray Ionization</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The mass-to-charge ratio serves as a critical parameter in peptide identification via mass spectrometry, enabling the precise determination of peptide masses and facilitating their differentiation based on unique charge characteristics, especially when peptides are ionized by tools like electrospray ionization, which produces multiply charged ions. We developed a neural network called CPred, which can accurately predict the charge state distribution from +1 to +7 for the modified and unmodified peptides. CPred was trained on the large-scale synthetic training data, consisting of tryptic and non-tryptic peptides, and various fragmentation methods. The model was further evaluated on independent, external test data sets. Results were evaluated through the Pearson correlation coefficient and showed high correlations of up to 0.9997117 between the predicted and acquired charge state distributions. The effect of specifying modifications in the neural network and feature importance was further investigated, revealing the value of modifications and vital peptide properties in holding on to protons. CPreds’ accurate predictions of the charge state distribution can play an essential role in boosting confidence in peptide identifications during rescoring as a novel feature.</description><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Data acquisition</subject><subject>Electrospraying</subject><subject>Ionization</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Parameter identification</subject><subject>Parameter modification</subject><subject>Peptides</subject><subject>Peptides - analysis</subject><subject>Peptides - chemistry</subject><subject>Predictions</subject><subject>Protons</subject><subject>Spectrometry, Mass, Electrospray Ionization - methods</subject><subject>Tryptic peptides</subject><issn>0003-2700</issn><issn>1520-6882</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMouq7-A5GAFy9dJ2nStN5kWXVBUVCvlrSdupF-mbQH_fWm7MfBg6chw_O-Qx5CzhjMGHB2pXM3042u8hXWM5EDY6D2yIRJDkEUx3yfTAAgDLgCOCLHzn3CyLDokByFCYsTweWEvM-fLRbXdL7S9gPpS697pOPK5L1pG1q2lj62hSkNFlQ3BX1r6u3zGbveFOioaeiiwry3reus_qbLtjE_esyfkINSVw5PN3NK3m4Xr_P74OHpbjm_eQg0l7IPMMxQy1KgKmWiMRZMocDMb6JIaCYhVIgsllIpKEvMRAYJ8AhYzBUXPAqn5HLd29n2a0DXp7VxOVaVbrAdXBpCokQiI8E8evEH_WwH60V6ikHk61SceEqsqdx_ylks086aWtvvlEE6-k-9_3TrP93497HzTfmQ1VjsQlvhHoA1MMZ3h__t_AW1RZNd</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>Vilenne, Frédérique</creator><creator>Agten, Annelies</creator><creator>Appeltans, Simon</creator><creator>Ertaylan, Gökhan</creator><creator>Valkenborg, Dirk</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6066-9035</orcidid></search><sort><creationdate>20240910</creationdate><title>CPred: Charge State Prediction for Modified and Unmodified Peptides in Electrospray Ionization</title><author>Vilenne, Frédérique ; Agten, Annelies ; Appeltans, Simon ; Ertaylan, Gökhan ; Valkenborg, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a255t-e3bea5f4e7f59ae8417e4eb5f4664a15037ee1855770ffeb4b090260182724263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Data acquisition</topic><topic>Electrospraying</topic><topic>Ionization</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Parameter identification</topic><topic>Parameter modification</topic><topic>Peptides</topic><topic>Peptides - analysis</topic><topic>Peptides - chemistry</topic><topic>Predictions</topic><topic>Protons</topic><topic>Spectrometry, Mass, Electrospray Ionization - methods</topic><topic>Tryptic peptides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vilenne, Frédérique</creatorcontrib><creatorcontrib>Agten, Annelies</creatorcontrib><creatorcontrib>Appeltans, Simon</creatorcontrib><creatorcontrib>Ertaylan, Gökhan</creatorcontrib><creatorcontrib>Valkenborg, Dirk</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vilenne, Frédérique</au><au>Agten, Annelies</au><au>Appeltans, Simon</au><au>Ertaylan, Gökhan</au><au>Valkenborg, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CPred: Charge State Prediction for Modified and Unmodified Peptides in Electrospray Ionization</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2024-09-10</date><risdate>2024</risdate><volume>96</volume><issue>36</issue><spage>14382</spage><epage>14392</epage><pages>14382-14392</pages><issn>0003-2700</issn><issn>1520-6882</issn><eissn>1520-6882</eissn><abstract>The mass-to-charge ratio serves as a critical parameter in peptide identification via mass spectrometry, enabling the precise determination of peptide masses and facilitating their differentiation based on unique charge characteristics, especially when peptides are ionized by tools like electrospray ionization, which produces multiply charged ions. We developed a neural network called CPred, which can accurately predict the charge state distribution from +1 to +7 for the modified and unmodified peptides. CPred was trained on the large-scale synthetic training data, consisting of tryptic and non-tryptic peptides, and various fragmentation methods. The model was further evaluated on independent, external test data sets. Results were evaluated through the Pearson correlation coefficient and showed high correlations of up to 0.9997117 between the predicted and acquired charge state distributions. The effect of specifying modifications in the neural network and feature importance was further investigated, revealing the value of modifications and vital peptide properties in holding on to protons. CPreds’ accurate predictions of the charge state distribution can play an essential role in boosting confidence in peptide identifications during rescoring as a novel feature.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39189425</pmid><doi>10.1021/acs.analchem.4c01107</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6066-9035</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2024-09, Vol.96 (36), p.14382-14392 |
issn | 0003-2700 1520-6882 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_3097495641 |
source | MEDLINE; American Chemical Society Journals |
subjects | Correlation coefficient Correlation coefficients Data acquisition Electrospraying Ionization Mass spectrometry Mass spectroscopy Neural networks Neural Networks, Computer Parameter identification Parameter modification Peptides Peptides - analysis Peptides - chemistry Predictions Protons Spectrometry, Mass, Electrospray Ionization - methods Tryptic peptides |
title | CPred: Charge State Prediction for Modified and Unmodified Peptides in Electrospray Ionization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A45%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CPred:%20Charge%20State%20Prediction%20for%20Modified%20and%20Unmodified%20Peptides%20in%20Electrospray%20Ionization&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Vilenne,%20Fre%CC%81de%CC%81rique&rft.date=2024-09-10&rft.volume=96&rft.issue=36&rft.spage=14382&rft.epage=14392&rft.pages=14382-14392&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.4c01107&rft_dat=%3Cproquest_cross%3E3106242789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106242789&rft_id=info:pmid/39189425&rfr_iscdi=true |