Phosphorylation of the HMGN1 Nucleosome Binding Domain Decreases Helicity and Interactions with the Acidic Patch

Intrinsically disordered proteins are abundant in the nucleus and are prime sites for posttranslational modifications that modulate transcriptional regulation. Lacking a defined three‐dimensional structure, intrinsically disordered proteins populate an ensemble of several conformational states, whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chembiochem : a European journal of chemical biology 2024-11, Vol.25 (22), p.e202400589-n/a
Hauptverfasser: Iebed, Dina, Gökler, Tobias, Ingen, Hugo, Conibear, Anne C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 22
container_start_page e202400589
container_title Chembiochem : a European journal of chemical biology
container_volume 25
creator Iebed, Dina
Gökler, Tobias
Ingen, Hugo
Conibear, Anne C.
description Intrinsically disordered proteins are abundant in the nucleus and are prime sites for posttranslational modifications that modulate transcriptional regulation. Lacking a defined three‐dimensional structure, intrinsically disordered proteins populate an ensemble of several conformational states, which are dynamic and often altered by posttranslational modifications, or by binding to interaction partners. Although there is growing appreciation for the role that intrinsically disordered regions have in regulating protein‐protein interactions, we still have a poor understanding of how to determine conformational population shifts, their causes under various conditions, and how to represent and model conformational ensembles. Here, we study the effects of serine phosphorylation in the nucleosome‐binding domain of an intrinsically disordered protein – HMGN1 – using NMR spectroscopy, circular dichroism and modelling of protein complexes. We show that phosphorylation induces local conformational changes in the peptide backbone and decreases the helical propensity of the nucleosome binding domain. Modelling studies using AlphaFold3 suggest that phosphorylation disrupts the interface between HMGN1 and the nucleosome acidic patch, but that the models over‐predict helicity in comparison to experimental data. These studies help us to build a picture of how posttranslational modifications might shift the conformational populations of disordered regions, alter access to histones, and regulate chromatin compaction. The nucleosome‐binding protein HMGN1 populates an ensemble of conformational states that could be shifted by phosphorylation within the nucleosome binding domain. Herein, we employ predictive modelling and experimental structural biology tools to explore how serine phosphorylation within this key motif decreases helicity and disrupts interaction with the nucleosome acidic patch.
doi_str_mv 10.1002/cbic.202400589
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3097492813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097492813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2989-6efde065e5d8c07704fad8b9eb9add05c2d04d3331a16498783f2fee14cfb2313</originalsourceid><addsrcrecordid>eNqFkT1v2zAQhomiRfPRrBkLAl262D1-WBLHxPmwgdT10MwERZ4iBpLokhIC__tasZMAWTLdDc_74HAvIecMpgyA_7Klt1MOXALMCvWJHDMp1CTPhPh82CXn-RE5SekRAFQm2FdyJBQrsgzyY7JZ1yFt6hC3jel96GioaF8jXfy-XTG6GmyDIYUW6aXvnO8e6FVoje_oFdqIJmGiC2y89f2Wms7RZddjNHY0Jfrk-_pZdmG985auTW_rb-RLZZqEZ4d5Su5vrv_OF5O7P7fL-cXdxHJVqEmGlUPIZjhzhYU8B1kZV5QKS2Wcg5nlDqQTQjDDMqmKvBAVrxCZtFXJBROn5Ofeu4nh34Cp161PFpvGdBiGpAWoXCpeMLFDf7xDH8MQu911WjA-unM5UtM9ZWNIKWKlN9G3Jm41Az12occu9GsXu8D3g3YoW3Sv-Mvzd4DaA0--we0HOj2_XM7f5P8BQKmVnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129878743</pqid></control><display><type>article</type><title>Phosphorylation of the HMGN1 Nucleosome Binding Domain Decreases Helicity and Interactions with the Acidic Patch</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Iebed, Dina ; Gökler, Tobias ; Ingen, Hugo ; Conibear, Anne C.</creator><creatorcontrib>Iebed, Dina ; Gökler, Tobias ; Ingen, Hugo ; Conibear, Anne C.</creatorcontrib><description>Intrinsically disordered proteins are abundant in the nucleus and are prime sites for posttranslational modifications that modulate transcriptional regulation. Lacking a defined three‐dimensional structure, intrinsically disordered proteins populate an ensemble of several conformational states, which are dynamic and often altered by posttranslational modifications, or by binding to interaction partners. Although there is growing appreciation for the role that intrinsically disordered regions have in regulating protein‐protein interactions, we still have a poor understanding of how to determine conformational population shifts, their causes under various conditions, and how to represent and model conformational ensembles. Here, we study the effects of serine phosphorylation in the nucleosome‐binding domain of an intrinsically disordered protein – HMGN1 – using NMR spectroscopy, circular dichroism and modelling of protein complexes. We show that phosphorylation induces local conformational changes in the peptide backbone and decreases the helical propensity of the nucleosome binding domain. Modelling studies using AlphaFold3 suggest that phosphorylation disrupts the interface between HMGN1 and the nucleosome acidic patch, but that the models over‐predict helicity in comparison to experimental data. These studies help us to build a picture of how posttranslational modifications might shift the conformational populations of disordered regions, alter access to histones, and regulate chromatin compaction. The nucleosome‐binding protein HMGN1 populates an ensemble of conformational states that could be shifted by phosphorylation within the nucleosome binding domain. Herein, we employ predictive modelling and experimental structural biology tools to explore how serine phosphorylation within this key motif decreases helicity and disrupts interaction with the nucleosome acidic patch.</description><identifier>ISSN: 1439-4227</identifier><identifier>ISSN: 1439-7633</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.202400589</identifier><identifier>PMID: 39186607</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Binding ; Binding Sites ; Chromatin ; Circular dichroism ; Dichroism ; Gene regulation ; Helicity ; Histones ; HMGN1 Protein - chemistry ; HMGN1 Protein - metabolism ; Humans ; Intrinsically disordered proteins ; Intrinsically Disordered Proteins - chemistry ; Intrinsically Disordered Proteins - metabolism ; Magnetic resonance spectroscopy ; Modelling ; Models, Molecular ; NMR spectroscopy ; Nuclear Magnetic Resonance, Biomolecular ; Nucleosomes - chemistry ; Nucleosomes - metabolism ; Phosphorylation ; Population studies ; Posttranslational modifications ; Protein Binding ; Protein Domains ; Protein interaction ; Proteins ; Solid phase peptide synthesis</subject><ispartof>Chembiochem : a European journal of chemical biology, 2024-11, Vol.25 (22), p.e202400589-n/a</ispartof><rights>2024 The Author(s). ChemBioChem published by Wiley-VCH GmbH</rights><rights>2024 The Author(s). ChemBioChem published by Wiley-VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2989-6efde065e5d8c07704fad8b9eb9add05c2d04d3331a16498783f2fee14cfb2313</cites><orcidid>0000-0002-0808-3811 ; 0000-0002-6048-1307 ; 0000-0002-5482-6225 ; 0009-0008-7920-1206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbic.202400589$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbic.202400589$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39186607$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iebed, Dina</creatorcontrib><creatorcontrib>Gökler, Tobias</creatorcontrib><creatorcontrib>Ingen, Hugo</creatorcontrib><creatorcontrib>Conibear, Anne C.</creatorcontrib><title>Phosphorylation of the HMGN1 Nucleosome Binding Domain Decreases Helicity and Interactions with the Acidic Patch</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>Intrinsically disordered proteins are abundant in the nucleus and are prime sites for posttranslational modifications that modulate transcriptional regulation. Lacking a defined three‐dimensional structure, intrinsically disordered proteins populate an ensemble of several conformational states, which are dynamic and often altered by posttranslational modifications, or by binding to interaction partners. Although there is growing appreciation for the role that intrinsically disordered regions have in regulating protein‐protein interactions, we still have a poor understanding of how to determine conformational population shifts, their causes under various conditions, and how to represent and model conformational ensembles. Here, we study the effects of serine phosphorylation in the nucleosome‐binding domain of an intrinsically disordered protein – HMGN1 – using NMR spectroscopy, circular dichroism and modelling of protein complexes. We show that phosphorylation induces local conformational changes in the peptide backbone and decreases the helical propensity of the nucleosome binding domain. Modelling studies using AlphaFold3 suggest that phosphorylation disrupts the interface between HMGN1 and the nucleosome acidic patch, but that the models over‐predict helicity in comparison to experimental data. These studies help us to build a picture of how posttranslational modifications might shift the conformational populations of disordered regions, alter access to histones, and regulate chromatin compaction. The nucleosome‐binding protein HMGN1 populates an ensemble of conformational states that could be shifted by phosphorylation within the nucleosome binding domain. Herein, we employ predictive modelling and experimental structural biology tools to explore how serine phosphorylation within this key motif decreases helicity and disrupts interaction with the nucleosome acidic patch.</description><subject>Binding</subject><subject>Binding Sites</subject><subject>Chromatin</subject><subject>Circular dichroism</subject><subject>Dichroism</subject><subject>Gene regulation</subject><subject>Helicity</subject><subject>Histones</subject><subject>HMGN1 Protein - chemistry</subject><subject>HMGN1 Protein - metabolism</subject><subject>Humans</subject><subject>Intrinsically disordered proteins</subject><subject>Intrinsically Disordered Proteins - chemistry</subject><subject>Intrinsically Disordered Proteins - metabolism</subject><subject>Magnetic resonance spectroscopy</subject><subject>Modelling</subject><subject>Models, Molecular</subject><subject>NMR spectroscopy</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Nucleosomes - chemistry</subject><subject>Nucleosomes - metabolism</subject><subject>Phosphorylation</subject><subject>Population studies</subject><subject>Posttranslational modifications</subject><subject>Protein Binding</subject><subject>Protein Domains</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Solid phase peptide synthesis</subject><issn>1439-4227</issn><issn>1439-7633</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkT1v2zAQhomiRfPRrBkLAl262D1-WBLHxPmwgdT10MwERZ4iBpLokhIC__tasZMAWTLdDc_74HAvIecMpgyA_7Klt1MOXALMCvWJHDMp1CTPhPh82CXn-RE5SekRAFQm2FdyJBQrsgzyY7JZ1yFt6hC3jel96GioaF8jXfy-XTG6GmyDIYUW6aXvnO8e6FVoje_oFdqIJmGiC2y89f2Wms7RZddjNHY0Jfrk-_pZdmG985auTW_rb-RLZZqEZ4d5Su5vrv_OF5O7P7fL-cXdxHJVqEmGlUPIZjhzhYU8B1kZV5QKS2Wcg5nlDqQTQjDDMqmKvBAVrxCZtFXJBROn5Ofeu4nh34Cp161PFpvGdBiGpAWoXCpeMLFDf7xDH8MQu911WjA-unM5UtM9ZWNIKWKlN9G3Jm41Az12occu9GsXu8D3g3YoW3Sv-Mvzd4DaA0--we0HOj2_XM7f5P8BQKmVnw</recordid><startdate>20241118</startdate><enddate>20241118</enddate><creator>Iebed, Dina</creator><creator>Gökler, Tobias</creator><creator>Ingen, Hugo</creator><creator>Conibear, Anne C.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0808-3811</orcidid><orcidid>https://orcid.org/0000-0002-6048-1307</orcidid><orcidid>https://orcid.org/0000-0002-5482-6225</orcidid><orcidid>https://orcid.org/0009-0008-7920-1206</orcidid></search><sort><creationdate>20241118</creationdate><title>Phosphorylation of the HMGN1 Nucleosome Binding Domain Decreases Helicity and Interactions with the Acidic Patch</title><author>Iebed, Dina ; Gökler, Tobias ; Ingen, Hugo ; Conibear, Anne C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2989-6efde065e5d8c07704fad8b9eb9add05c2d04d3331a16498783f2fee14cfb2313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binding</topic><topic>Binding Sites</topic><topic>Chromatin</topic><topic>Circular dichroism</topic><topic>Dichroism</topic><topic>Gene regulation</topic><topic>Helicity</topic><topic>Histones</topic><topic>HMGN1 Protein - chemistry</topic><topic>HMGN1 Protein - metabolism</topic><topic>Humans</topic><topic>Intrinsically disordered proteins</topic><topic>Intrinsically Disordered Proteins - chemistry</topic><topic>Intrinsically Disordered Proteins - metabolism</topic><topic>Magnetic resonance spectroscopy</topic><topic>Modelling</topic><topic>Models, Molecular</topic><topic>NMR spectroscopy</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Nucleosomes - chemistry</topic><topic>Nucleosomes - metabolism</topic><topic>Phosphorylation</topic><topic>Population studies</topic><topic>Posttranslational modifications</topic><topic>Protein Binding</topic><topic>Protein Domains</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Solid phase peptide synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iebed, Dina</creatorcontrib><creatorcontrib>Gökler, Tobias</creatorcontrib><creatorcontrib>Ingen, Hugo</creatorcontrib><creatorcontrib>Conibear, Anne C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iebed, Dina</au><au>Gökler, Tobias</au><au>Ingen, Hugo</au><au>Conibear, Anne C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphorylation of the HMGN1 Nucleosome Binding Domain Decreases Helicity and Interactions with the Acidic Patch</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2024-11-18</date><risdate>2024</risdate><volume>25</volume><issue>22</issue><spage>e202400589</spage><epage>n/a</epage><pages>e202400589-n/a</pages><issn>1439-4227</issn><issn>1439-7633</issn><eissn>1439-7633</eissn><abstract>Intrinsically disordered proteins are abundant in the nucleus and are prime sites for posttranslational modifications that modulate transcriptional regulation. Lacking a defined three‐dimensional structure, intrinsically disordered proteins populate an ensemble of several conformational states, which are dynamic and often altered by posttranslational modifications, or by binding to interaction partners. Although there is growing appreciation for the role that intrinsically disordered regions have in regulating protein‐protein interactions, we still have a poor understanding of how to determine conformational population shifts, their causes under various conditions, and how to represent and model conformational ensembles. Here, we study the effects of serine phosphorylation in the nucleosome‐binding domain of an intrinsically disordered protein – HMGN1 – using NMR spectroscopy, circular dichroism and modelling of protein complexes. We show that phosphorylation induces local conformational changes in the peptide backbone and decreases the helical propensity of the nucleosome binding domain. Modelling studies using AlphaFold3 suggest that phosphorylation disrupts the interface between HMGN1 and the nucleosome acidic patch, but that the models over‐predict helicity in comparison to experimental data. These studies help us to build a picture of how posttranslational modifications might shift the conformational populations of disordered regions, alter access to histones, and regulate chromatin compaction. The nucleosome‐binding protein HMGN1 populates an ensemble of conformational states that could be shifted by phosphorylation within the nucleosome binding domain. Herein, we employ predictive modelling and experimental structural biology tools to explore how serine phosphorylation within this key motif decreases helicity and disrupts interaction with the nucleosome acidic patch.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39186607</pmid><doi>10.1002/cbic.202400589</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0808-3811</orcidid><orcidid>https://orcid.org/0000-0002-6048-1307</orcidid><orcidid>https://orcid.org/0000-0002-5482-6225</orcidid><orcidid>https://orcid.org/0009-0008-7920-1206</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4227
ispartof Chembiochem : a European journal of chemical biology, 2024-11, Vol.25 (22), p.e202400589-n/a
issn 1439-4227
1439-7633
1439-7633
language eng
recordid cdi_proquest_miscellaneous_3097492813
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Binding
Binding Sites
Chromatin
Circular dichroism
Dichroism
Gene regulation
Helicity
Histones
HMGN1 Protein - chemistry
HMGN1 Protein - metabolism
Humans
Intrinsically disordered proteins
Intrinsically Disordered Proteins - chemistry
Intrinsically Disordered Proteins - metabolism
Magnetic resonance spectroscopy
Modelling
Models, Molecular
NMR spectroscopy
Nuclear Magnetic Resonance, Biomolecular
Nucleosomes - chemistry
Nucleosomes - metabolism
Phosphorylation
Population studies
Posttranslational modifications
Protein Binding
Protein Domains
Protein interaction
Proteins
Solid phase peptide synthesis
title Phosphorylation of the HMGN1 Nucleosome Binding Domain Decreases Helicity and Interactions with the Acidic Patch
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphorylation%20of%20the%20HMGN1%20Nucleosome%20Binding%20Domain%20Decreases%20Helicity%20and%20Interactions%20with%20the%20Acidic%20Patch&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Iebed,%20Dina&rft.date=2024-11-18&rft.volume=25&rft.issue=22&rft.spage=e202400589&rft.epage=n/a&rft.pages=e202400589-n/a&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.202400589&rft_dat=%3Cproquest_cross%3E3097492813%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129878743&rft_id=info:pmid/39186607&rfr_iscdi=true