Phosphorylation of the HMGN1 Nucleosome Binding Domain Decreases Helicity and Interactions with the Acidic Patch
Intrinsically disordered proteins are abundant in the nucleus and are prime sites for posttranslational modifications that modulate transcriptional regulation. Lacking a defined three‐dimensional structure, intrinsically disordered proteins populate an ensemble of several conformational states, whic...
Gespeichert in:
Veröffentlicht in: | Chembiochem : a European journal of chemical biology 2024-11, Vol.25 (22), p.e202400589-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 22 |
container_start_page | e202400589 |
container_title | Chembiochem : a European journal of chemical biology |
container_volume | 25 |
creator | Iebed, Dina Gökler, Tobias Ingen, Hugo Conibear, Anne C. |
description | Intrinsically disordered proteins are abundant in the nucleus and are prime sites for posttranslational modifications that modulate transcriptional regulation. Lacking a defined three‐dimensional structure, intrinsically disordered proteins populate an ensemble of several conformational states, which are dynamic and often altered by posttranslational modifications, or by binding to interaction partners. Although there is growing appreciation for the role that intrinsically disordered regions have in regulating protein‐protein interactions, we still have a poor understanding of how to determine conformational population shifts, their causes under various conditions, and how to represent and model conformational ensembles. Here, we study the effects of serine phosphorylation in the nucleosome‐binding domain of an intrinsically disordered protein – HMGN1 – using NMR spectroscopy, circular dichroism and modelling of protein complexes. We show that phosphorylation induces local conformational changes in the peptide backbone and decreases the helical propensity of the nucleosome binding domain. Modelling studies using AlphaFold3 suggest that phosphorylation disrupts the interface between HMGN1 and the nucleosome acidic patch, but that the models over‐predict helicity in comparison to experimental data. These studies help us to build a picture of how posttranslational modifications might shift the conformational populations of disordered regions, alter access to histones, and regulate chromatin compaction.
The nucleosome‐binding protein HMGN1 populates an ensemble of conformational states that could be shifted by phosphorylation within the nucleosome binding domain. Herein, we employ predictive modelling and experimental structural biology tools to explore how serine phosphorylation within this key motif decreases helicity and disrupts interaction with the nucleosome acidic patch. |
doi_str_mv | 10.1002/cbic.202400589 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3097492813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097492813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2989-6efde065e5d8c07704fad8b9eb9add05c2d04d3331a16498783f2fee14cfb2313</originalsourceid><addsrcrecordid>eNqFkT1v2zAQhomiRfPRrBkLAl262D1-WBLHxPmwgdT10MwERZ4iBpLokhIC__tasZMAWTLdDc_74HAvIecMpgyA_7Klt1MOXALMCvWJHDMp1CTPhPh82CXn-RE5SekRAFQm2FdyJBQrsgzyY7JZ1yFt6hC3jel96GioaF8jXfy-XTG6GmyDIYUW6aXvnO8e6FVoje_oFdqIJmGiC2y89f2Wms7RZddjNHY0Jfrk-_pZdmG985auTW_rb-RLZZqEZ4d5Su5vrv_OF5O7P7fL-cXdxHJVqEmGlUPIZjhzhYU8B1kZV5QKS2Wcg5nlDqQTQjDDMqmKvBAVrxCZtFXJBROn5Ofeu4nh34Cp161PFpvGdBiGpAWoXCpeMLFDf7xDH8MQu911WjA-unM5UtM9ZWNIKWKlN9G3Jm41Az12occu9GsXu8D3g3YoW3Sv-Mvzd4DaA0--we0HOj2_XM7f5P8BQKmVnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129878743</pqid></control><display><type>article</type><title>Phosphorylation of the HMGN1 Nucleosome Binding Domain Decreases Helicity and Interactions with the Acidic Patch</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Iebed, Dina ; Gökler, Tobias ; Ingen, Hugo ; Conibear, Anne C.</creator><creatorcontrib>Iebed, Dina ; Gökler, Tobias ; Ingen, Hugo ; Conibear, Anne C.</creatorcontrib><description>Intrinsically disordered proteins are abundant in the nucleus and are prime sites for posttranslational modifications that modulate transcriptional regulation. Lacking a defined three‐dimensional structure, intrinsically disordered proteins populate an ensemble of several conformational states, which are dynamic and often altered by posttranslational modifications, or by binding to interaction partners. Although there is growing appreciation for the role that intrinsically disordered regions have in regulating protein‐protein interactions, we still have a poor understanding of how to determine conformational population shifts, their causes under various conditions, and how to represent and model conformational ensembles. Here, we study the effects of serine phosphorylation in the nucleosome‐binding domain of an intrinsically disordered protein – HMGN1 – using NMR spectroscopy, circular dichroism and modelling of protein complexes. We show that phosphorylation induces local conformational changes in the peptide backbone and decreases the helical propensity of the nucleosome binding domain. Modelling studies using AlphaFold3 suggest that phosphorylation disrupts the interface between HMGN1 and the nucleosome acidic patch, but that the models over‐predict helicity in comparison to experimental data. These studies help us to build a picture of how posttranslational modifications might shift the conformational populations of disordered regions, alter access to histones, and regulate chromatin compaction.
The nucleosome‐binding protein HMGN1 populates an ensemble of conformational states that could be shifted by phosphorylation within the nucleosome binding domain. Herein, we employ predictive modelling and experimental structural biology tools to explore how serine phosphorylation within this key motif decreases helicity and disrupts interaction with the nucleosome acidic patch.</description><identifier>ISSN: 1439-4227</identifier><identifier>ISSN: 1439-7633</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.202400589</identifier><identifier>PMID: 39186607</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Binding ; Binding Sites ; Chromatin ; Circular dichroism ; Dichroism ; Gene regulation ; Helicity ; Histones ; HMGN1 Protein - chemistry ; HMGN1 Protein - metabolism ; Humans ; Intrinsically disordered proteins ; Intrinsically Disordered Proteins - chemistry ; Intrinsically Disordered Proteins - metabolism ; Magnetic resonance spectroscopy ; Modelling ; Models, Molecular ; NMR spectroscopy ; Nuclear Magnetic Resonance, Biomolecular ; Nucleosomes - chemistry ; Nucleosomes - metabolism ; Phosphorylation ; Population studies ; Posttranslational modifications ; Protein Binding ; Protein Domains ; Protein interaction ; Proteins ; Solid phase peptide synthesis</subject><ispartof>Chembiochem : a European journal of chemical biology, 2024-11, Vol.25 (22), p.e202400589-n/a</ispartof><rights>2024 The Author(s). ChemBioChem published by Wiley-VCH GmbH</rights><rights>2024 The Author(s). ChemBioChem published by Wiley-VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2989-6efde065e5d8c07704fad8b9eb9add05c2d04d3331a16498783f2fee14cfb2313</cites><orcidid>0000-0002-0808-3811 ; 0000-0002-6048-1307 ; 0000-0002-5482-6225 ; 0009-0008-7920-1206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbic.202400589$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbic.202400589$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39186607$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iebed, Dina</creatorcontrib><creatorcontrib>Gökler, Tobias</creatorcontrib><creatorcontrib>Ingen, Hugo</creatorcontrib><creatorcontrib>Conibear, Anne C.</creatorcontrib><title>Phosphorylation of the HMGN1 Nucleosome Binding Domain Decreases Helicity and Interactions with the Acidic Patch</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>Intrinsically disordered proteins are abundant in the nucleus and are prime sites for posttranslational modifications that modulate transcriptional regulation. Lacking a defined three‐dimensional structure, intrinsically disordered proteins populate an ensemble of several conformational states, which are dynamic and often altered by posttranslational modifications, or by binding to interaction partners. Although there is growing appreciation for the role that intrinsically disordered regions have in regulating protein‐protein interactions, we still have a poor understanding of how to determine conformational population shifts, their causes under various conditions, and how to represent and model conformational ensembles. Here, we study the effects of serine phosphorylation in the nucleosome‐binding domain of an intrinsically disordered protein – HMGN1 – using NMR spectroscopy, circular dichroism and modelling of protein complexes. We show that phosphorylation induces local conformational changes in the peptide backbone and decreases the helical propensity of the nucleosome binding domain. Modelling studies using AlphaFold3 suggest that phosphorylation disrupts the interface between HMGN1 and the nucleosome acidic patch, but that the models over‐predict helicity in comparison to experimental data. These studies help us to build a picture of how posttranslational modifications might shift the conformational populations of disordered regions, alter access to histones, and regulate chromatin compaction.
The nucleosome‐binding protein HMGN1 populates an ensemble of conformational states that could be shifted by phosphorylation within the nucleosome binding domain. Herein, we employ predictive modelling and experimental structural biology tools to explore how serine phosphorylation within this key motif decreases helicity and disrupts interaction with the nucleosome acidic patch.</description><subject>Binding</subject><subject>Binding Sites</subject><subject>Chromatin</subject><subject>Circular dichroism</subject><subject>Dichroism</subject><subject>Gene regulation</subject><subject>Helicity</subject><subject>Histones</subject><subject>HMGN1 Protein - chemistry</subject><subject>HMGN1 Protein - metabolism</subject><subject>Humans</subject><subject>Intrinsically disordered proteins</subject><subject>Intrinsically Disordered Proteins - chemistry</subject><subject>Intrinsically Disordered Proteins - metabolism</subject><subject>Magnetic resonance spectroscopy</subject><subject>Modelling</subject><subject>Models, Molecular</subject><subject>NMR spectroscopy</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Nucleosomes - chemistry</subject><subject>Nucleosomes - metabolism</subject><subject>Phosphorylation</subject><subject>Population studies</subject><subject>Posttranslational modifications</subject><subject>Protein Binding</subject><subject>Protein Domains</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Solid phase peptide synthesis</subject><issn>1439-4227</issn><issn>1439-7633</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkT1v2zAQhomiRfPRrBkLAl262D1-WBLHxPmwgdT10MwERZ4iBpLokhIC__tasZMAWTLdDc_74HAvIecMpgyA_7Klt1MOXALMCvWJHDMp1CTPhPh82CXn-RE5SekRAFQm2FdyJBQrsgzyY7JZ1yFt6hC3jel96GioaF8jXfy-XTG6GmyDIYUW6aXvnO8e6FVoje_oFdqIJmGiC2y89f2Wms7RZddjNHY0Jfrk-_pZdmG985auTW_rb-RLZZqEZ4d5Su5vrv_OF5O7P7fL-cXdxHJVqEmGlUPIZjhzhYU8B1kZV5QKS2Wcg5nlDqQTQjDDMqmKvBAVrxCZtFXJBROn5Ofeu4nh34Cp161PFpvGdBiGpAWoXCpeMLFDf7xDH8MQu911WjA-unM5UtM9ZWNIKWKlN9G3Jm41Az12occu9GsXu8D3g3YoW3Sv-Mvzd4DaA0--we0HOj2_XM7f5P8BQKmVnw</recordid><startdate>20241118</startdate><enddate>20241118</enddate><creator>Iebed, Dina</creator><creator>Gökler, Tobias</creator><creator>Ingen, Hugo</creator><creator>Conibear, Anne C.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0808-3811</orcidid><orcidid>https://orcid.org/0000-0002-6048-1307</orcidid><orcidid>https://orcid.org/0000-0002-5482-6225</orcidid><orcidid>https://orcid.org/0009-0008-7920-1206</orcidid></search><sort><creationdate>20241118</creationdate><title>Phosphorylation of the HMGN1 Nucleosome Binding Domain Decreases Helicity and Interactions with the Acidic Patch</title><author>Iebed, Dina ; Gökler, Tobias ; Ingen, Hugo ; Conibear, Anne C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2989-6efde065e5d8c07704fad8b9eb9add05c2d04d3331a16498783f2fee14cfb2313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binding</topic><topic>Binding Sites</topic><topic>Chromatin</topic><topic>Circular dichroism</topic><topic>Dichroism</topic><topic>Gene regulation</topic><topic>Helicity</topic><topic>Histones</topic><topic>HMGN1 Protein - chemistry</topic><topic>HMGN1 Protein - metabolism</topic><topic>Humans</topic><topic>Intrinsically disordered proteins</topic><topic>Intrinsically Disordered Proteins - chemistry</topic><topic>Intrinsically Disordered Proteins - metabolism</topic><topic>Magnetic resonance spectroscopy</topic><topic>Modelling</topic><topic>Models, Molecular</topic><topic>NMR spectroscopy</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Nucleosomes - chemistry</topic><topic>Nucleosomes - metabolism</topic><topic>Phosphorylation</topic><topic>Population studies</topic><topic>Posttranslational modifications</topic><topic>Protein Binding</topic><topic>Protein Domains</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Solid phase peptide synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iebed, Dina</creatorcontrib><creatorcontrib>Gökler, Tobias</creatorcontrib><creatorcontrib>Ingen, Hugo</creatorcontrib><creatorcontrib>Conibear, Anne C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iebed, Dina</au><au>Gökler, Tobias</au><au>Ingen, Hugo</au><au>Conibear, Anne C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphorylation of the HMGN1 Nucleosome Binding Domain Decreases Helicity and Interactions with the Acidic Patch</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2024-11-18</date><risdate>2024</risdate><volume>25</volume><issue>22</issue><spage>e202400589</spage><epage>n/a</epage><pages>e202400589-n/a</pages><issn>1439-4227</issn><issn>1439-7633</issn><eissn>1439-7633</eissn><abstract>Intrinsically disordered proteins are abundant in the nucleus and are prime sites for posttranslational modifications that modulate transcriptional regulation. Lacking a defined three‐dimensional structure, intrinsically disordered proteins populate an ensemble of several conformational states, which are dynamic and often altered by posttranslational modifications, or by binding to interaction partners. Although there is growing appreciation for the role that intrinsically disordered regions have in regulating protein‐protein interactions, we still have a poor understanding of how to determine conformational population shifts, their causes under various conditions, and how to represent and model conformational ensembles. Here, we study the effects of serine phosphorylation in the nucleosome‐binding domain of an intrinsically disordered protein – HMGN1 – using NMR spectroscopy, circular dichroism and modelling of protein complexes. We show that phosphorylation induces local conformational changes in the peptide backbone and decreases the helical propensity of the nucleosome binding domain. Modelling studies using AlphaFold3 suggest that phosphorylation disrupts the interface between HMGN1 and the nucleosome acidic patch, but that the models over‐predict helicity in comparison to experimental data. These studies help us to build a picture of how posttranslational modifications might shift the conformational populations of disordered regions, alter access to histones, and regulate chromatin compaction.
The nucleosome‐binding protein HMGN1 populates an ensemble of conformational states that could be shifted by phosphorylation within the nucleosome binding domain. Herein, we employ predictive modelling and experimental structural biology tools to explore how serine phosphorylation within this key motif decreases helicity and disrupts interaction with the nucleosome acidic patch.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39186607</pmid><doi>10.1002/cbic.202400589</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0808-3811</orcidid><orcidid>https://orcid.org/0000-0002-6048-1307</orcidid><orcidid>https://orcid.org/0000-0002-5482-6225</orcidid><orcidid>https://orcid.org/0009-0008-7920-1206</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4227 |
ispartof | Chembiochem : a European journal of chemical biology, 2024-11, Vol.25 (22), p.e202400589-n/a |
issn | 1439-4227 1439-7633 1439-7633 |
language | eng |
recordid | cdi_proquest_miscellaneous_3097492813 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Binding Binding Sites Chromatin Circular dichroism Dichroism Gene regulation Helicity Histones HMGN1 Protein - chemistry HMGN1 Protein - metabolism Humans Intrinsically disordered proteins Intrinsically Disordered Proteins - chemistry Intrinsically Disordered Proteins - metabolism Magnetic resonance spectroscopy Modelling Models, Molecular NMR spectroscopy Nuclear Magnetic Resonance, Biomolecular Nucleosomes - chemistry Nucleosomes - metabolism Phosphorylation Population studies Posttranslational modifications Protein Binding Protein Domains Protein interaction Proteins Solid phase peptide synthesis |
title | Phosphorylation of the HMGN1 Nucleosome Binding Domain Decreases Helicity and Interactions with the Acidic Patch |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphorylation%20of%20the%20HMGN1%20Nucleosome%20Binding%20Domain%20Decreases%20Helicity%20and%20Interactions%20with%20the%20Acidic%20Patch&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Iebed,%20Dina&rft.date=2024-11-18&rft.volume=25&rft.issue=22&rft.spage=e202400589&rft.epage=n/a&rft.pages=e202400589-n/a&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.202400589&rft_dat=%3Cproquest_cross%3E3097492813%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129878743&rft_id=info:pmid/39186607&rfr_iscdi=true |