The role of chitosan grafted copolymer/zeolite Schiff base nanofiber in adsorption of copper and zinc cations from aqueous media
The objective of this research was to develop and assess chitosan-grafted copolymer/HZSM5 zeolite Schiff base nanofibers for Cu2+ and Zn2+ adsorption from aqueous media. Nanofibers were prepared via electrospinning and characterized using XRD, FTIR, 1H NMR, FESEM, TGA, BET, and XPS. The study evalua...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-10, Vol.278 (Pt 3), p.135003, Article 135003 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The objective of this research was to develop and assess chitosan-grafted copolymer/HZSM5 zeolite Schiff base nanofibers for Cu2+ and Zn2+ adsorption from aqueous media. Nanofibers were prepared via electrospinning and characterized using XRD, FTIR, 1H NMR, FESEM, TGA, BET, and XPS. The study evaluated the effect of unmodified HZSM5 and Schiff base functionalization on adsorption capacities. Incorporating 10.0 wt% zeolite Schiff base as the optimum content into the chitosan-grafted copolymer significantly enhanced adsorption, achieving increases of 98.2 % for Zn2+ and 42.2 % for Cu2+. Specifically, Zn2+ adsorption increased from 27.6 to 54.7 mg/g, and Cu2+ from 67.1 to 95.4 mg/g. Factors such as temperature, pH, adsorption time, and initial cation concentration were analyzed. Kinetic studies revealed a double-exponential model, and isotherm analysis indicated a good fit with the Redlich-Peterson model, showing maximum monolayer capacities of 310.1 mg/g for Cu2+ and 97.8 mg/g for Zn2+ (pH 6.0, 240 min, 45 °C). The adsorption thermodynamics indicated a spontaneous and endothermic adsorption. Reusability tests showed minimal capacity loss (4.91 % for Cu2+ and 5.59 % for Zn2+) after five cycles. The nanofiber displayed greater selectivity for Cu2+ over Zn2+ in multi-ion systems and real electroplating wastewater, highlighting its potential for targeted heavy metal removal. |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.135003 |