Procalcitonin for safe reduction of unnecessary blood cultures in the emergency department: Development and validation of a prediction model

Blood cultures (BCs) are commonly ordered in emergency departments (EDs), while a minority yields a relevant pathogen. Diagnostic stewardship is needed to safely reduce unnecessary BCs. We aimed to develop and validate a bacteremia prediction model for ED patients, with specific focus on the benefit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of infection 2024-10, Vol.89 (4), p.106251, Article 106251
Hauptverfasser: Kaal, Anna G., Meziyerh, Soufian, van Burgel, Nathalie, Dane, Martijn, Kolfschoten, Nikki E., Mahajan, Prashant, Julián-Jiménez, Agustín, Steyerberg, Ewout W., van Nieuwkoop, Cees
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 106251
container_title The Journal of infection
container_volume 89
creator Kaal, Anna G.
Meziyerh, Soufian
van Burgel, Nathalie
Dane, Martijn
Kolfschoten, Nikki E.
Mahajan, Prashant
Julián-Jiménez, Agustín
Steyerberg, Ewout W.
van Nieuwkoop, Cees
description Blood cultures (BCs) are commonly ordered in emergency departments (EDs), while a minority yields a relevant pathogen. Diagnostic stewardship is needed to safely reduce unnecessary BCs. We aimed to develop and validate a bacteremia prediction model for ED patients, with specific focus on the benefit of incorporating procalcitonin. We included adult patients with suspected bacteremia from a Dutch ED for a one-year period. We defined 23 candidate predictors for a “full model”, of which nine were used for an automatable "basic model”. Variations of both models with C-reactive protein and procalcitonin were constructed using LASSO regression, with bootstrapping for internal validation. External validation was done in an independent cohort of patients with confirmed infection from 71 Spanish EDs. We assessed discriminative performance using the C-statistic and calibration with calibration curves. Clinical usefulness was evaluated by sensitivity, specificity, saved BCs, and Net Benefit. Among 2111 patients in the derivation cohort (mean age 63 years, 46% male), 273 (13%) had bacteremia, versus 896 (20%) in the external cohort (n = 4436). Adding procalcitonin substantially improved performance for all models. The basic model with procalcitonin showed most promise, with a C-statistic of 0.87 (0.86–0.88) upon external validation. At a 5% risk threshold, it showed a sensitivity of 99% and could have saved 29% of BCs while only missing 10 out of 896 (1.1%) bacteremia patients. Procalcitonin-based bacteremia prediction models can safely reduce unnecessary BCs at the ED. Further validation is needed across a broader range of healthcare settings. •There is a clear need to improve the diagnostic process of suspected bacteremia.•The reference standard of drawing blood cultures (BCs) is costly.•False-positive BCs are associated with negative patient outcomes.•We developed and validated a bacteremia prediction model with procalcitonin.•This model could have saved 29% of BCs while only missing 1.1% of true positive BCs.
doi_str_mv 10.1016/j.jinf.2024.106251
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3097149012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0163445324001853</els_id><sourcerecordid>3097149012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-283a079a79e988809716b6ad752beebc4405f7601900289afc69dbfc9b7badca3</originalsourceid><addsrcrecordid>eNp9kc2OFSEQhYnRONfRF3BhWLrpKz_9h3FjRp0xmUQXuiY0FMoNDS3QN5l3mIeWTs-4dFWh8p1T4RyEXlNypIT2707Hkwv2yAhr66JnHX2CDrTjrGFDy56iQ4V407Ydv0Avcj4RQgQX_XN0wQUdWd-xA7r_nqJWXrsSgwvYxoSzsoATmFUXFwOOFq8hgIacVbrDk4_RYL36sibIuGrKb8AwQ_oFQd9hA4tKZYZQ3uNPcAYfl-2BVTD4rLwz6tFV4aVecfuVORrwL9Ezq3yGVw_zEv388vnH1U1z--3669XH20YzPpSGjVyRQahBgBjHkYiB9lOvzNCxCWDSbUs6O_SECkLYKJTVvTCT1WIaJmW04pfo7e67pPhnhVzk7LIG71WAuGbJN8tWEMoqynZUp5hzAiuX5OYahKREbi3Ik9xakFsLcm-hit48-K_TDOaf5DH2CnzYAai_PDtIMmtX46txJNBFmuj-5_8X3sybxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097149012</pqid></control><display><type>article</type><title>Procalcitonin for safe reduction of unnecessary blood cultures in the emergency department: Development and validation of a prediction model</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kaal, Anna G. ; Meziyerh, Soufian ; van Burgel, Nathalie ; Dane, Martijn ; Kolfschoten, Nikki E. ; Mahajan, Prashant ; Julián-Jiménez, Agustín ; Steyerberg, Ewout W. ; van Nieuwkoop, Cees</creator><creatorcontrib>Kaal, Anna G. ; Meziyerh, Soufian ; van Burgel, Nathalie ; Dane, Martijn ; Kolfschoten, Nikki E. ; Mahajan, Prashant ; Julián-Jiménez, Agustín ; Steyerberg, Ewout W. ; van Nieuwkoop, Cees</creatorcontrib><description>Blood cultures (BCs) are commonly ordered in emergency departments (EDs), while a minority yields a relevant pathogen. Diagnostic stewardship is needed to safely reduce unnecessary BCs. We aimed to develop and validate a bacteremia prediction model for ED patients, with specific focus on the benefit of incorporating procalcitonin. We included adult patients with suspected bacteremia from a Dutch ED for a one-year period. We defined 23 candidate predictors for a “full model”, of which nine were used for an automatable "basic model”. Variations of both models with C-reactive protein and procalcitonin were constructed using LASSO regression, with bootstrapping for internal validation. External validation was done in an independent cohort of patients with confirmed infection from 71 Spanish EDs. We assessed discriminative performance using the C-statistic and calibration with calibration curves. Clinical usefulness was evaluated by sensitivity, specificity, saved BCs, and Net Benefit. Among 2111 patients in the derivation cohort (mean age 63 years, 46% male), 273 (13%) had bacteremia, versus 896 (20%) in the external cohort (n = 4436). Adding procalcitonin substantially improved performance for all models. The basic model with procalcitonin showed most promise, with a C-statistic of 0.87 (0.86–0.88) upon external validation. At a 5% risk threshold, it showed a sensitivity of 99% and could have saved 29% of BCs while only missing 10 out of 896 (1.1%) bacteremia patients. Procalcitonin-based bacteremia prediction models can safely reduce unnecessary BCs at the ED. Further validation is needed across a broader range of healthcare settings. •There is a clear need to improve the diagnostic process of suspected bacteremia.•The reference standard of drawing blood cultures (BCs) is costly.•False-positive BCs are associated with negative patient outcomes.•We developed and validated a bacteremia prediction model with procalcitonin.•This model could have saved 29% of BCs while only missing 1.1% of true positive BCs.</description><identifier>ISSN: 0163-4453</identifier><identifier>ISSN: 1532-2742</identifier><identifier>EISSN: 1532-2742</identifier><identifier>DOI: 10.1016/j.jinf.2024.106251</identifier><identifier>PMID: 39182652</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bacteremia ; Blood culture ; Prediction ; Procalcitonin</subject><ispartof>The Journal of infection, 2024-10, Vol.89 (4), p.106251, Article 106251</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c237t-283a079a79e988809716b6ad752beebc4405f7601900289afc69dbfc9b7badca3</cites><orcidid>0000-0002-6009-3515 ; 0000-0002-3105-7750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jinf.2024.106251$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39182652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaal, Anna G.</creatorcontrib><creatorcontrib>Meziyerh, Soufian</creatorcontrib><creatorcontrib>van Burgel, Nathalie</creatorcontrib><creatorcontrib>Dane, Martijn</creatorcontrib><creatorcontrib>Kolfschoten, Nikki E.</creatorcontrib><creatorcontrib>Mahajan, Prashant</creatorcontrib><creatorcontrib>Julián-Jiménez, Agustín</creatorcontrib><creatorcontrib>Steyerberg, Ewout W.</creatorcontrib><creatorcontrib>van Nieuwkoop, Cees</creatorcontrib><title>Procalcitonin for safe reduction of unnecessary blood cultures in the emergency department: Development and validation of a prediction model</title><title>The Journal of infection</title><addtitle>J Infect</addtitle><description>Blood cultures (BCs) are commonly ordered in emergency departments (EDs), while a minority yields a relevant pathogen. Diagnostic stewardship is needed to safely reduce unnecessary BCs. We aimed to develop and validate a bacteremia prediction model for ED patients, with specific focus on the benefit of incorporating procalcitonin. We included adult patients with suspected bacteremia from a Dutch ED for a one-year period. We defined 23 candidate predictors for a “full model”, of which nine were used for an automatable "basic model”. Variations of both models with C-reactive protein and procalcitonin were constructed using LASSO regression, with bootstrapping for internal validation. External validation was done in an independent cohort of patients with confirmed infection from 71 Spanish EDs. We assessed discriminative performance using the C-statistic and calibration with calibration curves. Clinical usefulness was evaluated by sensitivity, specificity, saved BCs, and Net Benefit. Among 2111 patients in the derivation cohort (mean age 63 years, 46% male), 273 (13%) had bacteremia, versus 896 (20%) in the external cohort (n = 4436). Adding procalcitonin substantially improved performance for all models. The basic model with procalcitonin showed most promise, with a C-statistic of 0.87 (0.86–0.88) upon external validation. At a 5% risk threshold, it showed a sensitivity of 99% and could have saved 29% of BCs while only missing 10 out of 896 (1.1%) bacteremia patients. Procalcitonin-based bacteremia prediction models can safely reduce unnecessary BCs at the ED. Further validation is needed across a broader range of healthcare settings. •There is a clear need to improve the diagnostic process of suspected bacteremia.•The reference standard of drawing blood cultures (BCs) is costly.•False-positive BCs are associated with negative patient outcomes.•We developed and validated a bacteremia prediction model with procalcitonin.•This model could have saved 29% of BCs while only missing 1.1% of true positive BCs.</description><subject>Bacteremia</subject><subject>Blood culture</subject><subject>Prediction</subject><subject>Procalcitonin</subject><issn>0163-4453</issn><issn>1532-2742</issn><issn>1532-2742</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc2OFSEQhYnRONfRF3BhWLrpKz_9h3FjRp0xmUQXuiY0FMoNDS3QN5l3mIeWTs-4dFWh8p1T4RyEXlNypIT2707Hkwv2yAhr66JnHX2CDrTjrGFDy56iQ4V407Ydv0Avcj4RQgQX_XN0wQUdWd-xA7r_nqJWXrsSgwvYxoSzsoATmFUXFwOOFq8hgIacVbrDk4_RYL36sibIuGrKb8AwQ_oFQd9hA4tKZYZQ3uNPcAYfl-2BVTD4rLwz6tFV4aVecfuVORrwL9Ezq3yGVw_zEv388vnH1U1z--3669XH20YzPpSGjVyRQahBgBjHkYiB9lOvzNCxCWDSbUs6O_SECkLYKJTVvTCT1WIaJmW04pfo7e67pPhnhVzk7LIG71WAuGbJN8tWEMoqynZUp5hzAiuX5OYahKREbi3Ik9xakFsLcm-hit48-K_TDOaf5DH2CnzYAai_PDtIMmtX46txJNBFmuj-5_8X3sybxw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Kaal, Anna G.</creator><creator>Meziyerh, Soufian</creator><creator>van Burgel, Nathalie</creator><creator>Dane, Martijn</creator><creator>Kolfschoten, Nikki E.</creator><creator>Mahajan, Prashant</creator><creator>Julián-Jiménez, Agustín</creator><creator>Steyerberg, Ewout W.</creator><creator>van Nieuwkoop, Cees</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6009-3515</orcidid><orcidid>https://orcid.org/0000-0002-3105-7750</orcidid></search><sort><creationdate>20241001</creationdate><title>Procalcitonin for safe reduction of unnecessary blood cultures in the emergency department: Development and validation of a prediction model</title><author>Kaal, Anna G. ; Meziyerh, Soufian ; van Burgel, Nathalie ; Dane, Martijn ; Kolfschoten, Nikki E. ; Mahajan, Prashant ; Julián-Jiménez, Agustín ; Steyerberg, Ewout W. ; van Nieuwkoop, Cees</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-283a079a79e988809716b6ad752beebc4405f7601900289afc69dbfc9b7badca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bacteremia</topic><topic>Blood culture</topic><topic>Prediction</topic><topic>Procalcitonin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaal, Anna G.</creatorcontrib><creatorcontrib>Meziyerh, Soufian</creatorcontrib><creatorcontrib>van Burgel, Nathalie</creatorcontrib><creatorcontrib>Dane, Martijn</creatorcontrib><creatorcontrib>Kolfschoten, Nikki E.</creatorcontrib><creatorcontrib>Mahajan, Prashant</creatorcontrib><creatorcontrib>Julián-Jiménez, Agustín</creatorcontrib><creatorcontrib>Steyerberg, Ewout W.</creatorcontrib><creatorcontrib>van Nieuwkoop, Cees</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of infection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaal, Anna G.</au><au>Meziyerh, Soufian</au><au>van Burgel, Nathalie</au><au>Dane, Martijn</au><au>Kolfschoten, Nikki E.</au><au>Mahajan, Prashant</au><au>Julián-Jiménez, Agustín</au><au>Steyerberg, Ewout W.</au><au>van Nieuwkoop, Cees</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Procalcitonin for safe reduction of unnecessary blood cultures in the emergency department: Development and validation of a prediction model</atitle><jtitle>The Journal of infection</jtitle><addtitle>J Infect</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>89</volume><issue>4</issue><spage>106251</spage><pages>106251-</pages><artnum>106251</artnum><issn>0163-4453</issn><issn>1532-2742</issn><eissn>1532-2742</eissn><abstract>Blood cultures (BCs) are commonly ordered in emergency departments (EDs), while a minority yields a relevant pathogen. Diagnostic stewardship is needed to safely reduce unnecessary BCs. We aimed to develop and validate a bacteremia prediction model for ED patients, with specific focus on the benefit of incorporating procalcitonin. We included adult patients with suspected bacteremia from a Dutch ED for a one-year period. We defined 23 candidate predictors for a “full model”, of which nine were used for an automatable "basic model”. Variations of both models with C-reactive protein and procalcitonin were constructed using LASSO regression, with bootstrapping for internal validation. External validation was done in an independent cohort of patients with confirmed infection from 71 Spanish EDs. We assessed discriminative performance using the C-statistic and calibration with calibration curves. Clinical usefulness was evaluated by sensitivity, specificity, saved BCs, and Net Benefit. Among 2111 patients in the derivation cohort (mean age 63 years, 46% male), 273 (13%) had bacteremia, versus 896 (20%) in the external cohort (n = 4436). Adding procalcitonin substantially improved performance for all models. The basic model with procalcitonin showed most promise, with a C-statistic of 0.87 (0.86–0.88) upon external validation. At a 5% risk threshold, it showed a sensitivity of 99% and could have saved 29% of BCs while only missing 10 out of 896 (1.1%) bacteremia patients. Procalcitonin-based bacteremia prediction models can safely reduce unnecessary BCs at the ED. Further validation is needed across a broader range of healthcare settings. •There is a clear need to improve the diagnostic process of suspected bacteremia.•The reference standard of drawing blood cultures (BCs) is costly.•False-positive BCs are associated with negative patient outcomes.•We developed and validated a bacteremia prediction model with procalcitonin.•This model could have saved 29% of BCs while only missing 1.1% of true positive BCs.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39182652</pmid><doi>10.1016/j.jinf.2024.106251</doi><orcidid>https://orcid.org/0000-0002-6009-3515</orcidid><orcidid>https://orcid.org/0000-0002-3105-7750</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0163-4453
ispartof The Journal of infection, 2024-10, Vol.89 (4), p.106251, Article 106251
issn 0163-4453
1532-2742
1532-2742
language eng
recordid cdi_proquest_miscellaneous_3097149012
source Elsevier ScienceDirect Journals Complete
subjects Bacteremia
Blood culture
Prediction
Procalcitonin
title Procalcitonin for safe reduction of unnecessary blood cultures in the emergency department: Development and validation of a prediction model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Procalcitonin%20for%20safe%20reduction%20of%20unnecessary%20blood%20cultures%20in%20the%20emergency%20department:%20Development%20and%20validation%20of%20a%20prediction%20model&rft.jtitle=The%20Journal%20of%20infection&rft.au=Kaal,%20Anna%20G.&rft.date=2024-10-01&rft.volume=89&rft.issue=4&rft.spage=106251&rft.pages=106251-&rft.artnum=106251&rft.issn=0163-4453&rft.eissn=1532-2742&rft_id=info:doi/10.1016/j.jinf.2024.106251&rft_dat=%3Cproquest_cross%3E3097149012%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097149012&rft_id=info:pmid/39182652&rft_els_id=S0163445324001853&rfr_iscdi=true