Ti3C2 MXene quantum dots as an efficient fluorescent probe for bioflavonoid quercetin quantification in food samples

Quercetin (QC) is known as a typical antioxidant as a bioflavonoid, and its quick, sensitive, and specific detection is crucial for assessing food products. In this study, for the purpose of luminescence-based sensing of QC, bright bluish-green emissive quantum dots of N-doped MXene-based titanium c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta 2024-09, Vol.1322, p.343069, Article 343069
Hauptverfasser: Rajamanikandan, Ramar, Sasikumar, Kandasamy, Ju, Heongkyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quercetin (QC) is known as a typical antioxidant as a bioflavonoid, and its quick, sensitive, and specific detection is crucial for assessing food products. In this study, for the purpose of luminescence-based sensing of QC, bright bluish-green emissive quantum dots of N-doped MXene-based titanium carbide (Ti3C2) were fabricated. Recently, MXene quantum dots (MX-QDs), the rapidly emerging zero-dimensional nanomaterials made from two-dimensional transition metal carbides, have attracted much interest due to their unique physical and chemical features. These include the extremely large surface-to-volume ratio, biocompatibility, luminescence tunability, and hybridization capability while retaining properties of their two-dimensional counterpart including good conductivity and charge transferability. The fabricated Ti3C2 MX-QDs had a quantum yield of 8.13 % at the emission wavelength of λem = 465 nm and displayed excellent photostability with great colloidal stability. It was found that introducing QC to near Ti3C2 MX-QDs reduced their fluorescence signals due to quenching effects. These quenching effects that occurred in a very broad linear range of QC (25–600 nM) enabled QC to be sensed quantitatively with the limit of detection of QC (1.35 nM), being the lowest ever reported to date. The quenching phenomena that caused such excellent sensitivity could be accounted for by combined effects of static quenching/radiation-free complex formation and inner filter effects (IFE) of Ti3C2 MX-QDs with QC. In addition, the quenching-based detection demonstrated excellent specificity against structurally relevant interferants. Therefore, the presented sensing strategies with Ti3C2 MX-QDs-based fluorescence quenching can be one of the strongest candidates as a reliable and cost-effective solution to highly sensitive quantification of QC in food samples. [Display omitted] •Ti3C2 MXene quantum dots are effectively applied for the detection of QC for the first time.•QC molecules suppress the fluorescence features of MX QDs via the IFE process.•The developed Ti3C2 MXene quantum dots-based sensor exhibited a low detection limit, long linear range, and excellent anti-interference ability.•The fabricated sensor was offered to detect QC in orange, onion, and wine samples.
ISSN:0003-2670
1873-4324
1873-4324
DOI:10.1016/j.aca.2024.343069