Optimization of reflow soldering process for BGA packages by artificial neural network
Purpose - This investigation applied a hybrid method combining a trained artificial neural network (ANN) and the sequential quadratic programming (SQP) method to determine an optimal parameter setting for a reflow soldering process of ball grid array packages in printed circuit boards.Design methodo...
Gespeichert in:
Veröffentlicht in: | Microelectronics international 2007-01, Vol.24 (2), p.64-70 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 70 |
---|---|
container_issue | 2 |
container_start_page | 64 |
container_title | Microelectronics international |
container_volume | 24 |
creator | Lin, Yu-Hsin Deng, Wei-Jaw Shie, Jie-Ren Yang, Yung-Kuang |
description | Purpose - This investigation applied a hybrid method combining a trained artificial neural network (ANN) and the sequential quadratic programming (SQP) method to determine an optimal parameter setting for a reflow soldering process of ball grid array packages in printed circuit boards.Design methodology approach - Nine experiments based on an orthogonal array table with three-controlled inputs and average shear forces of solder spheres as a quality target were utilized to train the ANN and then the SQP method was implemented to search for an optimal setting of parameters.Findings - The ANN can be utilized successfully to predict the shear force under different reflow soldering conditions after being properly trained and the identified optimal parameter setting are capable of striking the balance between the average shear forces and the manufacturing cycle time.Practical implications - The reflow time and the peak temperature were found to be the most significant factors for the reflow process via analysis of variance.Originality value - This study provided an algorithm integrating a black-box modeling approach (i.e. the ANN predictive model) with the SQP method to resolve an optimization problem. This algorithm offered an effective and systematic way to identify an optimal setting of the reflow soldering process. Hence, the efficiency of designing the optimal parameters was greatly improved. |
doi_str_mv | 10.1108/13565360710745610 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30970347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30970347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-51833eede15209ae142a942454ea209327467f06a0edeab14d14749d73f5a08c3</originalsourceid><addsrcrecordid>eNqN0U9rFTEQAPBFFKzVD-AtCHpy60wy2WSPbWlroVIo_ruFNJuU9O3brMk-av30Rl9RqIieEjK_mUwyTfMcYQ8R9BsUspOiA4WgSHYID5odVFK3Gvnnh3Vf420F_HHzpJRrAOTEYaf5eD4vcR2_2SWmiaXAsg9jumEljYPPcbpic07Ol8JCyuzgZJ_N1q3slS_s8pbZvMQQXbQjm_wm_1yWm5RXT5tHwY7FP7tbd5sPx0fvD9-2Z-cnp4f7Z60jDUsrUQvh_eBRcuitR-K2J06SvK0HgivqVIDOQjX2EmlAUtQPSgRpQTux27za1q1dftn4sph1LM6Po5182hQjBEmkesk_IfQKBKkKX9yD12mTp_oIw7ETvIOeKsItcjmVUr_MzDmubb41CObHPMwf86g5L-8K2-LsGLKdXCy_E7UiQX1fXbt1sSz-66-4zSvTKaGkoU_cHFygPr541xtdPWy9X_s6geG_Wnn9l5T71MxDEN8BpWWzMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216326094</pqid></control><display><type>article</type><title>Optimization of reflow soldering process for BGA packages by artificial neural network</title><source>Emerald Journals</source><creator>Lin, Yu-Hsin ; Deng, Wei-Jaw ; Shie, Jie-Ren ; Yang, Yung-Kuang</creator><creatorcontrib>Lin, Yu-Hsin ; Deng, Wei-Jaw ; Shie, Jie-Ren ; Yang, Yung-Kuang</creatorcontrib><description>Purpose - This investigation applied a hybrid method combining a trained artificial neural network (ANN) and the sequential quadratic programming (SQP) method to determine an optimal parameter setting for a reflow soldering process of ball grid array packages in printed circuit boards.Design methodology approach - Nine experiments based on an orthogonal array table with three-controlled inputs and average shear forces of solder spheres as a quality target were utilized to train the ANN and then the SQP method was implemented to search for an optimal setting of parameters.Findings - The ANN can be utilized successfully to predict the shear force under different reflow soldering conditions after being properly trained and the identified optimal parameter setting are capable of striking the balance between the average shear forces and the manufacturing cycle time.Practical implications - The reflow time and the peak temperature were found to be the most significant factors for the reflow process via analysis of variance.Originality value - This study provided an algorithm integrating a black-box modeling approach (i.e. the ANN predictive model) with the SQP method to resolve an optimization problem. This algorithm offered an effective and systematic way to identify an optimal setting of the reflow soldering process. Hence, the efficiency of designing the optimal parameters was greatly improved.</description><identifier>ISSN: 1356-5362</identifier><identifier>EISSN: 1758-812X</identifier><identifier>DOI: 10.1108/13565360710745610</identifier><identifier>CODEN: MIINF2</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Analysis of variance ; Applied sciences ; Design of experiments ; Design. Technologies. Operation analysis. Testing ; Electric, optical and optoelectronic circuits ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Exact sciences and technology ; Integrated circuits ; Manufacturing ; Mathematical models ; Neural nets ; Neural networks ; Neurons ; Optimization ; Optimization techniques ; Package design ; Printed circuit boards ; Procedure manuals ; Quadratic programming ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Shear tests ; Soldering ; Statistical analysis ; Studies</subject><ispartof>Microelectronics international, 2007-01, Vol.24 (2), p.64-70</ispartof><rights>Emerald Group Publishing Limited</rights><rights>2007 INIST-CNRS</rights><rights>Copyright Emerald Group Publishing Limited 2007</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-51833eede15209ae142a942454ea209327467f06a0edeab14d14749d73f5a08c3</citedby><cites>FETCH-LOGICAL-c480t-51833eede15209ae142a942454ea209327467f06a0edeab14d14749d73f5a08c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/13565360710745610/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/13565360710745610/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,776,780,961,11614,27901,27902,52661,52664</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18743499$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Yu-Hsin</creatorcontrib><creatorcontrib>Deng, Wei-Jaw</creatorcontrib><creatorcontrib>Shie, Jie-Ren</creatorcontrib><creatorcontrib>Yang, Yung-Kuang</creatorcontrib><title>Optimization of reflow soldering process for BGA packages by artificial neural network</title><title>Microelectronics international</title><description>Purpose - This investigation applied a hybrid method combining a trained artificial neural network (ANN) and the sequential quadratic programming (SQP) method to determine an optimal parameter setting for a reflow soldering process of ball grid array packages in printed circuit boards.Design methodology approach - Nine experiments based on an orthogonal array table with three-controlled inputs and average shear forces of solder spheres as a quality target were utilized to train the ANN and then the SQP method was implemented to search for an optimal setting of parameters.Findings - The ANN can be utilized successfully to predict the shear force under different reflow soldering conditions after being properly trained and the identified optimal parameter setting are capable of striking the balance between the average shear forces and the manufacturing cycle time.Practical implications - The reflow time and the peak temperature were found to be the most significant factors for the reflow process via analysis of variance.Originality value - This study provided an algorithm integrating a black-box modeling approach (i.e. the ANN predictive model) with the SQP method to resolve an optimization problem. This algorithm offered an effective and systematic way to identify an optimal setting of the reflow soldering process. Hence, the efficiency of designing the optimal parameters was greatly improved.</description><subject>Analysis of variance</subject><subject>Applied sciences</subject><subject>Design of experiments</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Neural nets</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Package design</subject><subject>Printed circuit boards</subject><subject>Procedure manuals</subject><subject>Quadratic programming</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Shear tests</subject><subject>Soldering</subject><subject>Statistical analysis</subject><subject>Studies</subject><issn>1356-5362</issn><issn>1758-812X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqN0U9rFTEQAPBFFKzVD-AtCHpy60wy2WSPbWlroVIo_ruFNJuU9O3brMk-av30Rl9RqIieEjK_mUwyTfMcYQ8R9BsUspOiA4WgSHYID5odVFK3Gvnnh3Vf420F_HHzpJRrAOTEYaf5eD4vcR2_2SWmiaXAsg9jumEljYPPcbpic07Ol8JCyuzgZJ_N1q3slS_s8pbZvMQQXbQjm_wm_1yWm5RXT5tHwY7FP7tbd5sPx0fvD9-2Z-cnp4f7Z60jDUsrUQvh_eBRcuitR-K2J06SvK0HgivqVIDOQjX2EmlAUtQPSgRpQTux27za1q1dftn4sph1LM6Po5182hQjBEmkesk_IfQKBKkKX9yD12mTp_oIw7ETvIOeKsItcjmVUr_MzDmubb41CObHPMwf86g5L-8K2-LsGLKdXCy_E7UiQX1fXbt1sSz-66-4zSvTKaGkoU_cHFygPr541xtdPWy9X_s6geG_Wnn9l5T71MxDEN8BpWWzMw</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Lin, Yu-Hsin</creator><creator>Deng, Wei-Jaw</creator><creator>Shie, Jie-Ren</creator><creator>Yang, Yung-Kuang</creator><general>Emerald Group Publishing Limited</general><general>MCB University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L7M</scope><scope>M0C</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20070101</creationdate><title>Optimization of reflow soldering process for BGA packages by artificial neural network</title><author>Lin, Yu-Hsin ; Deng, Wei-Jaw ; Shie, Jie-Ren ; Yang, Yung-Kuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-51833eede15209ae142a942454ea209327467f06a0edeab14d14749d73f5a08c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Analysis of variance</topic><topic>Applied sciences</topic><topic>Design of experiments</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Neural nets</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Package design</topic><topic>Printed circuit boards</topic><topic>Procedure manuals</topic><topic>Quadratic programming</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Shear tests</topic><topic>Soldering</topic><topic>Statistical analysis</topic><topic>Studies</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yu-Hsin</creatorcontrib><creatorcontrib>Deng, Wei-Jaw</creatorcontrib><creatorcontrib>Shie, Jie-Ren</creatorcontrib><creatorcontrib>Yang, Yung-Kuang</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Electronics & Communications Abstracts</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Microelectronics international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Yu-Hsin</au><au>Deng, Wei-Jaw</au><au>Shie, Jie-Ren</au><au>Yang, Yung-Kuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of reflow soldering process for BGA packages by artificial neural network</atitle><jtitle>Microelectronics international</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>24</volume><issue>2</issue><spage>64</spage><epage>70</epage><pages>64-70</pages><issn>1356-5362</issn><eissn>1758-812X</eissn><coden>MIINF2</coden><abstract>Purpose - This investigation applied a hybrid method combining a trained artificial neural network (ANN) and the sequential quadratic programming (SQP) method to determine an optimal parameter setting for a reflow soldering process of ball grid array packages in printed circuit boards.Design methodology approach - Nine experiments based on an orthogonal array table with three-controlled inputs and average shear forces of solder spheres as a quality target were utilized to train the ANN and then the SQP method was implemented to search for an optimal setting of parameters.Findings - The ANN can be utilized successfully to predict the shear force under different reflow soldering conditions after being properly trained and the identified optimal parameter setting are capable of striking the balance between the average shear forces and the manufacturing cycle time.Practical implications - The reflow time and the peak temperature were found to be the most significant factors for the reflow process via analysis of variance.Originality value - This study provided an algorithm integrating a black-box modeling approach (i.e. the ANN predictive model) with the SQP method to resolve an optimization problem. This algorithm offered an effective and systematic way to identify an optimal setting of the reflow soldering process. Hence, the efficiency of designing the optimal parameters was greatly improved.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/13565360710745610</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1356-5362 |
ispartof | Microelectronics international, 2007-01, Vol.24 (2), p.64-70 |
issn | 1356-5362 1758-812X |
language | eng |
recordid | cdi_proquest_miscellaneous_30970347 |
source | Emerald Journals |
subjects | Analysis of variance Applied sciences Design of experiments Design. Technologies. Operation analysis. Testing Electric, optical and optoelectronic circuits Electronic equipment and fabrication. Passive components, printed wiring boards, connectics Electronics Exact sciences and technology Integrated circuits Manufacturing Mathematical models Neural nets Neural networks Neurons Optimization Optimization techniques Package design Printed circuit boards Procedure manuals Quadratic programming Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Shear tests Soldering Statistical analysis Studies |
title | Optimization of reflow soldering process for BGA packages by artificial neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20reflow%20soldering%20process%20for%20BGA%20packages%20by%20artificial%20neural%20network&rft.jtitle=Microelectronics%20international&rft.au=Lin,%20Yu-Hsin&rft.date=2007-01-01&rft.volume=24&rft.issue=2&rft.spage=64&rft.epage=70&rft.pages=64-70&rft.issn=1356-5362&rft.eissn=1758-812X&rft.coden=MIINF2&rft_id=info:doi/10.1108/13565360710745610&rft_dat=%3Cproquest_cross%3E30970347%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216326094&rft_id=info:pmid/&rfr_iscdi=true |