Periodic Solutions in the Planar (n+1) Ring Problem with Oblateness

In the N-body ring problem, the motion of an infinitesimal particle attracted by the gravitational field of (n + 1) bodies is studied. These bodies are arranged in a planar ring configuration. This configuration consists of n primaries of equal mass m located at the vertices of a regular polygon tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 2007-11, Vol.30 (6), p.1640-1648
Hauptverfasser: Elipe, Antonio, Arribas, Mercedes, Kalvouridis, Tilemahos J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1648
container_issue 6
container_start_page 1640
container_title Journal of guidance, control, and dynamics
container_volume 30
creator Elipe, Antonio
Arribas, Mercedes
Kalvouridis, Tilemahos J
description In the N-body ring problem, the motion of an infinitesimal particle attracted by the gravitational field of (n + 1) bodies is studied. These bodies are arranged in a planar ring configuration. This configuration consists of n primaries of equal mass m located at the vertices of a regular polygon that is rotating on its own plane about its center of mass with a constant angular velocity w. Another primary of mass m0 = betam(beta0 parameter) is placed at the center of the ring. Moreover, we assume that the central body may be an ellipsoid, or a radiation source, which introduces a new parameter epsilon. In this case, the dynamics are found to be much richer than the classical problem due to the different equilibria and bifurcation characteristics. We find families of periodic orbits and make an analysis of the orbits by studying their evolution and stability along the family for several values of the new parameter introduced.
doi_str_mv 10.2514/1.29524
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_miscellaneous_30969834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313788700</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-1fb522ef37bfcfa0b44d06d11c81b33809e983dfc4943c6e33f8b9be7096964a3</originalsourceid><addsrcrecordid>eNpt0FtLwzAYBuAgCs4p_oWAxyHVpF_appcyPMFgw8N1SNNEM7J2Ji3qvze6gTC8-m4e3vfjReiQkss0o-yKXqZllrItNKAZQAKcs200IAXQJCMl2UV7IcwJoZDTYoDGM-1tW1uFn1rXd7ZtArYN7t40njnZSI_Pmws6wo-2ecUz31ZOL_CH7d7wtHKy040OYR_tGOmCPljfIXq5vXke3yeT6d3D-HqSSEZJl1BTZWmqDRSVUUaSirGa5DWlitMKgJNSlxxqo1jJQOUawPCqrHRByrzMmYQhOl3lLn373uvQiYUNSrv4p277IOAHcmARHm3Aedv7Jv4mUqBQcF4QEtXZSinfhuC1EUtvF9J_CUrEz5SCit8pozxZ58mgpDNeNsqGPx5r49Y8utHKSSvlX-c6RixrI0zvXKc_u2iP_7Ub1d9rJonY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313788700</pqid></control><display><type>article</type><title>Periodic Solutions in the Planar (n+1) Ring Problem with Oblateness</title><source>Alma/SFX Local Collection</source><creator>Elipe, Antonio ; Arribas, Mercedes ; Kalvouridis, Tilemahos J</creator><creatorcontrib>Elipe, Antonio ; Arribas, Mercedes ; Kalvouridis, Tilemahos J</creatorcontrib><description>In the N-body ring problem, the motion of an infinitesimal particle attracted by the gravitational field of (n + 1) bodies is studied. These bodies are arranged in a planar ring configuration. This configuration consists of n primaries of equal mass m located at the vertices of a regular polygon that is rotating on its own plane about its center of mass with a constant angular velocity w. Another primary of mass m0 = betam(beta0 parameter) is placed at the center of the ring. Moreover, we assume that the central body may be an ellipsoid, or a radiation source, which introduces a new parameter epsilon. In this case, the dynamics are found to be much richer than the classical problem due to the different equilibria and bifurcation characteristics. We find families of periodic orbits and make an analysis of the orbits by studying their evolution and stability along the family for several values of the new parameter introduced.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.29524</identifier><identifier>CODEN: JGCODS</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Applied sciences ; Artificial satellites ; Computer science; control theory; systems ; Control theory. Systems ; Equilibrium ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Radiation ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics</subject><ispartof>Journal of guidance, control, and dynamics, 2007-11, Vol.30 (6), p.1640-1648</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Nov/Dec 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-1fb522ef37bfcfa0b44d06d11c81b33809e983dfc4943c6e33f8b9be7096964a3</citedby><cites>FETCH-LOGICAL-a410t-1fb522ef37bfcfa0b44d06d11c81b33809e983dfc4943c6e33f8b9be7096964a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19691538$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Elipe, Antonio</creatorcontrib><creatorcontrib>Arribas, Mercedes</creatorcontrib><creatorcontrib>Kalvouridis, Tilemahos J</creatorcontrib><title>Periodic Solutions in the Planar (n+1) Ring Problem with Oblateness</title><title>Journal of guidance, control, and dynamics</title><description>In the N-body ring problem, the motion of an infinitesimal particle attracted by the gravitational field of (n + 1) bodies is studied. These bodies are arranged in a planar ring configuration. This configuration consists of n primaries of equal mass m located at the vertices of a regular polygon that is rotating on its own plane about its center of mass with a constant angular velocity w. Another primary of mass m0 = betam(beta0 parameter) is placed at the center of the ring. Moreover, we assume that the central body may be an ellipsoid, or a radiation source, which introduces a new parameter epsilon. In this case, the dynamics are found to be much richer than the classical problem due to the different equilibria and bifurcation characteristics. We find families of periodic orbits and make an analysis of the orbits by studying their evolution and stability along the family for several values of the new parameter introduced.</description><subject>Applied sciences</subject><subject>Artificial satellites</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Equilibrium</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Radiation</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpt0FtLwzAYBuAgCs4p_oWAxyHVpF_appcyPMFgw8N1SNNEM7J2Ji3qvze6gTC8-m4e3vfjReiQkss0o-yKXqZllrItNKAZQAKcs200IAXQJCMl2UV7IcwJoZDTYoDGM-1tW1uFn1rXd7ZtArYN7t40njnZSI_Pmws6wo-2ecUz31ZOL_CH7d7wtHKy040OYR_tGOmCPljfIXq5vXke3yeT6d3D-HqSSEZJl1BTZWmqDRSVUUaSirGa5DWlitMKgJNSlxxqo1jJQOUawPCqrHRByrzMmYQhOl3lLn373uvQiYUNSrv4p277IOAHcmARHm3Aedv7Jv4mUqBQcF4QEtXZSinfhuC1EUtvF9J_CUrEz5SCit8pozxZ58mgpDNeNsqGPx5r49Y8utHKSSvlX-c6RixrI0zvXKc_u2iP_7Ub1d9rJonY</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Elipe, Antonio</creator><creator>Arribas, Mercedes</creator><creator>Kalvouridis, Tilemahos J</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20071101</creationdate><title>Periodic Solutions in the Planar (n+1) Ring Problem with Oblateness</title><author>Elipe, Antonio ; Arribas, Mercedes ; Kalvouridis, Tilemahos J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-1fb522ef37bfcfa0b44d06d11c81b33809e983dfc4943c6e33f8b9be7096964a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Artificial satellites</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Equilibrium</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Radiation</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elipe, Antonio</creatorcontrib><creatorcontrib>Arribas, Mercedes</creatorcontrib><creatorcontrib>Kalvouridis, Tilemahos J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elipe, Antonio</au><au>Arribas, Mercedes</au><au>Kalvouridis, Tilemahos J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic Solutions in the Planar (n+1) Ring Problem with Oblateness</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2007-11-01</date><risdate>2007</risdate><volume>30</volume><issue>6</issue><spage>1640</spage><epage>1648</epage><pages>1640-1648</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><coden>JGCODS</coden><abstract>In the N-body ring problem, the motion of an infinitesimal particle attracted by the gravitational field of (n + 1) bodies is studied. These bodies are arranged in a planar ring configuration. This configuration consists of n primaries of equal mass m located at the vertices of a regular polygon that is rotating on its own plane about its center of mass with a constant angular velocity w. Another primary of mass m0 = betam(beta0 parameter) is placed at the center of the ring. Moreover, we assume that the central body may be an ellipsoid, or a radiation source, which introduces a new parameter epsilon. In this case, the dynamics are found to be much richer than the classical problem due to the different equilibria and bifurcation characteristics. We find families of periodic orbits and make an analysis of the orbits by studying their evolution and stability along the family for several values of the new parameter introduced.</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.29524</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0731-5090
ispartof Journal of guidance, control, and dynamics, 2007-11, Vol.30 (6), p.1640-1648
issn 0731-5090
1533-3884
language eng
recordid cdi_proquest_miscellaneous_30969834
source Alma/SFX Local Collection
subjects Applied sciences
Artificial satellites
Computer science
control theory
systems
Control theory. Systems
Equilibrium
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Radiation
Solid dynamics (ballistics, collision, multibody system, stabilization...)
Solid mechanics
title Periodic Solutions in the Planar (n+1) Ring Problem with Oblateness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A21%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20Solutions%20in%20the%20Planar%20(n+1)%20Ring%20Problem%20with%20Oblateness&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Elipe,%20Antonio&rft.date=2007-11-01&rft.volume=30&rft.issue=6&rft.spage=1640&rft.epage=1648&rft.pages=1640-1648&rft.issn=0731-5090&rft.eissn=1533-3884&rft.coden=JGCODS&rft_id=info:doi/10.2514/1.29524&rft_dat=%3Cproquest_aiaa_%3E2313788700%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313788700&rft_id=info:pmid/&rfr_iscdi=true