Periodic Solutions in the Planar (n+1) Ring Problem with Oblateness
In the N-body ring problem, the motion of an infinitesimal particle attracted by the gravitational field of (n + 1) bodies is studied. These bodies are arranged in a planar ring configuration. This configuration consists of n primaries of equal mass m located at the vertices of a regular polygon tha...
Gespeichert in:
Veröffentlicht in: | Journal of guidance, control, and dynamics control, and dynamics, 2007-11, Vol.30 (6), p.1640-1648 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1648 |
---|---|
container_issue | 6 |
container_start_page | 1640 |
container_title | Journal of guidance, control, and dynamics |
container_volume | 30 |
creator | Elipe, Antonio Arribas, Mercedes Kalvouridis, Tilemahos J |
description | In the N-body ring problem, the motion of an infinitesimal particle attracted by the gravitational field of (n + 1) bodies is studied. These bodies are arranged in a planar ring configuration. This configuration consists of n primaries of equal mass m located at the vertices of a regular polygon that is rotating on its own plane about its center of mass with a constant angular velocity w. Another primary of mass m0 = betam(beta0 parameter) is placed at the center of the ring. Moreover, we assume that the central body may be an ellipsoid, or a radiation source, which introduces a new parameter epsilon. In this case, the dynamics are found to be much richer than the classical problem due to the different equilibria and bifurcation characteristics. We find families of periodic orbits and make an analysis of the orbits by studying their evolution and stability along the family for several values of the new parameter introduced. |
doi_str_mv | 10.2514/1.29524 |
format | Article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_miscellaneous_30969834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313788700</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-1fb522ef37bfcfa0b44d06d11c81b33809e983dfc4943c6e33f8b9be7096964a3</originalsourceid><addsrcrecordid>eNpt0FtLwzAYBuAgCs4p_oWAxyHVpF_appcyPMFgw8N1SNNEM7J2Ji3qvze6gTC8-m4e3vfjReiQkss0o-yKXqZllrItNKAZQAKcs200IAXQJCMl2UV7IcwJoZDTYoDGM-1tW1uFn1rXd7ZtArYN7t40njnZSI_Pmws6wo-2ecUz31ZOL_CH7d7wtHKy040OYR_tGOmCPljfIXq5vXke3yeT6d3D-HqSSEZJl1BTZWmqDRSVUUaSirGa5DWlitMKgJNSlxxqo1jJQOUawPCqrHRByrzMmYQhOl3lLn373uvQiYUNSrv4p277IOAHcmARHm3Aedv7Jv4mUqBQcF4QEtXZSinfhuC1EUtvF9J_CUrEz5SCit8pozxZ58mgpDNeNsqGPx5r49Y8utHKSSvlX-c6RixrI0zvXKc_u2iP_7Ub1d9rJonY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313788700</pqid></control><display><type>article</type><title>Periodic Solutions in the Planar (n+1) Ring Problem with Oblateness</title><source>Alma/SFX Local Collection</source><creator>Elipe, Antonio ; Arribas, Mercedes ; Kalvouridis, Tilemahos J</creator><creatorcontrib>Elipe, Antonio ; Arribas, Mercedes ; Kalvouridis, Tilemahos J</creatorcontrib><description>In the N-body ring problem, the motion of an infinitesimal particle attracted by the gravitational field of (n + 1) bodies is studied. These bodies are arranged in a planar ring configuration. This configuration consists of n primaries of equal mass m located at the vertices of a regular polygon that is rotating on its own plane about its center of mass with a constant angular velocity w. Another primary of mass m0 = betam(beta0 parameter) is placed at the center of the ring. Moreover, we assume that the central body may be an ellipsoid, or a radiation source, which introduces a new parameter epsilon. In this case, the dynamics are found to be much richer than the classical problem due to the different equilibria and bifurcation characteristics. We find families of periodic orbits and make an analysis of the orbits by studying their evolution and stability along the family for several values of the new parameter introduced.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.29524</identifier><identifier>CODEN: JGCODS</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Applied sciences ; Artificial satellites ; Computer science; control theory; systems ; Control theory. Systems ; Equilibrium ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Radiation ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics</subject><ispartof>Journal of guidance, control, and dynamics, 2007-11, Vol.30 (6), p.1640-1648</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Nov/Dec 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-1fb522ef37bfcfa0b44d06d11c81b33809e983dfc4943c6e33f8b9be7096964a3</citedby><cites>FETCH-LOGICAL-a410t-1fb522ef37bfcfa0b44d06d11c81b33809e983dfc4943c6e33f8b9be7096964a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19691538$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Elipe, Antonio</creatorcontrib><creatorcontrib>Arribas, Mercedes</creatorcontrib><creatorcontrib>Kalvouridis, Tilemahos J</creatorcontrib><title>Periodic Solutions in the Planar (n+1) Ring Problem with Oblateness</title><title>Journal of guidance, control, and dynamics</title><description>In the N-body ring problem, the motion of an infinitesimal particle attracted by the gravitational field of (n + 1) bodies is studied. These bodies are arranged in a planar ring configuration. This configuration consists of n primaries of equal mass m located at the vertices of a regular polygon that is rotating on its own plane about its center of mass with a constant angular velocity w. Another primary of mass m0 = betam(beta0 parameter) is placed at the center of the ring. Moreover, we assume that the central body may be an ellipsoid, or a radiation source, which introduces a new parameter epsilon. In this case, the dynamics are found to be much richer than the classical problem due to the different equilibria and bifurcation characteristics. We find families of periodic orbits and make an analysis of the orbits by studying their evolution and stability along the family for several values of the new parameter introduced.</description><subject>Applied sciences</subject><subject>Artificial satellites</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Equilibrium</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Radiation</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpt0FtLwzAYBuAgCs4p_oWAxyHVpF_appcyPMFgw8N1SNNEM7J2Ji3qvze6gTC8-m4e3vfjReiQkss0o-yKXqZllrItNKAZQAKcs200IAXQJCMl2UV7IcwJoZDTYoDGM-1tW1uFn1rXd7ZtArYN7t40njnZSI_Pmws6wo-2ecUz31ZOL_CH7d7wtHKy040OYR_tGOmCPljfIXq5vXke3yeT6d3D-HqSSEZJl1BTZWmqDRSVUUaSirGa5DWlitMKgJNSlxxqo1jJQOUawPCqrHRByrzMmYQhOl3lLn373uvQiYUNSrv4p277IOAHcmARHm3Aedv7Jv4mUqBQcF4QEtXZSinfhuC1EUtvF9J_CUrEz5SCit8pozxZ58mgpDNeNsqGPx5r49Y8utHKSSvlX-c6RixrI0zvXKc_u2iP_7Ub1d9rJonY</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Elipe, Antonio</creator><creator>Arribas, Mercedes</creator><creator>Kalvouridis, Tilemahos J</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20071101</creationdate><title>Periodic Solutions in the Planar (n+1) Ring Problem with Oblateness</title><author>Elipe, Antonio ; Arribas, Mercedes ; Kalvouridis, Tilemahos J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-1fb522ef37bfcfa0b44d06d11c81b33809e983dfc4943c6e33f8b9be7096964a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Artificial satellites</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Equilibrium</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Radiation</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elipe, Antonio</creatorcontrib><creatorcontrib>Arribas, Mercedes</creatorcontrib><creatorcontrib>Kalvouridis, Tilemahos J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elipe, Antonio</au><au>Arribas, Mercedes</au><au>Kalvouridis, Tilemahos J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic Solutions in the Planar (n+1) Ring Problem with Oblateness</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2007-11-01</date><risdate>2007</risdate><volume>30</volume><issue>6</issue><spage>1640</spage><epage>1648</epage><pages>1640-1648</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><coden>JGCODS</coden><abstract>In the N-body ring problem, the motion of an infinitesimal particle attracted by the gravitational field of (n + 1) bodies is studied. These bodies are arranged in a planar ring configuration. This configuration consists of n primaries of equal mass m located at the vertices of a regular polygon that is rotating on its own plane about its center of mass with a constant angular velocity w. Another primary of mass m0 = betam(beta0 parameter) is placed at the center of the ring. Moreover, we assume that the central body may be an ellipsoid, or a radiation source, which introduces a new parameter epsilon. In this case, the dynamics are found to be much richer than the classical problem due to the different equilibria and bifurcation characteristics. We find families of periodic orbits and make an analysis of the orbits by studying their evolution and stability along the family for several values of the new parameter introduced.</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.29524</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0731-5090 |
ispartof | Journal of guidance, control, and dynamics, 2007-11, Vol.30 (6), p.1640-1648 |
issn | 0731-5090 1533-3884 |
language | eng |
recordid | cdi_proquest_miscellaneous_30969834 |
source | Alma/SFX Local Collection |
subjects | Applied sciences Artificial satellites Computer science control theory systems Control theory. Systems Equilibrium Exact sciences and technology Fundamental areas of phenomenology (including applications) Physics Radiation Solid dynamics (ballistics, collision, multibody system, stabilization...) Solid mechanics |
title | Periodic Solutions in the Planar (n+1) Ring Problem with Oblateness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A21%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20Solutions%20in%20the%20Planar%20(n+1)%20Ring%20Problem%20with%20Oblateness&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Elipe,%20Antonio&rft.date=2007-11-01&rft.volume=30&rft.issue=6&rft.spage=1640&rft.epage=1648&rft.pages=1640-1648&rft.issn=0731-5090&rft.eissn=1533-3884&rft.coden=JGCODS&rft_id=info:doi/10.2514/1.29524&rft_dat=%3Cproquest_aiaa_%3E2313788700%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313788700&rft_id=info:pmid/&rfr_iscdi=true |