Computational methods and biomarker discovery strategies for spatial proteomics: a review in immuno-oncology

Abstract Advancements in imaging technologies have revolutionized our ability to deeply profile pathological tissue architectures, generating large volumes of imaging data with unparalleled spatial resolution. This type of data collection, namely, spatial proteomics, offers invaluable insights into...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2024-07, Vol.25 (5)
Hauptverfasser: Mi, Haoyang, Sivagnanam, Shamilene, Ho, Won Jin, Zhang, Shuming, Bergman, Daniel, Deshpande, Atul, Baras, Alexander S, Jaffee, Elizabeth M, Coussens, Lisa M, Fertig, Elana J, Popel, Aleksander S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Briefings in bioinformatics
container_volume 25
creator Mi, Haoyang
Sivagnanam, Shamilene
Ho, Won Jin
Zhang, Shuming
Bergman, Daniel
Deshpande, Atul
Baras, Alexander S
Jaffee, Elizabeth M
Coussens, Lisa M
Fertig, Elana J
Popel, Aleksander S
description Abstract Advancements in imaging technologies have revolutionized our ability to deeply profile pathological tissue architectures, generating large volumes of imaging data with unparalleled spatial resolution. This type of data collection, namely, spatial proteomics, offers invaluable insights into various human diseases. Simultaneously, computational algorithms have evolved to manage the increasing dimensionality of spatial proteomics inherent in this progress. Numerous imaging-based computational frameworks, such as computational pathology, have been proposed for research and clinical applications. However, the development of these fields demands diverse domain expertise, creating barriers to their integration and further application. This review seeks to bridge this divide by presenting a comprehensive guideline. We consolidate prevailing computational methods and outline a roadmap from image processing to data-driven, statistics-informed biomarker discovery. Additionally, we explore future perspectives as the field moves toward interfacing with other quantitative domains, holding significant promise for precision care in immuno-oncology.
doi_str_mv 10.1093/bib/bbae421
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3096666129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbae421</oup_id><sourcerecordid>3096666129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-816742e83b2c2e6970a89c6b38bf59365c0812c2c5e58554406c43ef5507d8123</originalsourceid><addsrcrecordid>eNp9kc1r3DAQxUVJ6G6TnHoPgkAoFCf6tKzcwpIvCOSSnI0kj7fa2pYr2Qn730dhtzn00LloYH7zGL2H0HdKLijR_NJ6e2mtAcHoF7SkQqlCECkOPvpSFVKUfIG-pbQhhBFV0a9owTVVmolqibpV6Md5MpMPg-lwD9Ov0CRshgZbH3oTf0PEjU8uvELc4jRFM8HaQ8JtiDiNeTGvjTFMEHrv0hU2OMKrhzfsB-z7fh5CEQYXurDeHqPD1nQJTvbvEXq5vXle3RePT3cPq-vHwjHFp6KipRIMKm6ZY1BqRUylXWl5ZVupeSkdqWgeOQmyklIIUjrBoZWSqCZP-BH6sdPNd_2ZIU11n38AXWcGCHOqOdFlLsp0Rs_-QTdhjtmKTFHCtM6G0Uz93FEuhpQitPUYfTZnW1NSf4RQ5xDqfQiZPt1rzraH5pP963oGzndAmMf_Kr0DrQWQcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102997811</pqid></control><display><type>article</type><title>Computational methods and biomarker discovery strategies for spatial proteomics: a review in immuno-oncology</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Mi, Haoyang ; Sivagnanam, Shamilene ; Ho, Won Jin ; Zhang, Shuming ; Bergman, Daniel ; Deshpande, Atul ; Baras, Alexander S ; Jaffee, Elizabeth M ; Coussens, Lisa M ; Fertig, Elana J ; Popel, Aleksander S</creator><creatorcontrib>Mi, Haoyang ; Sivagnanam, Shamilene ; Ho, Won Jin ; Zhang, Shuming ; Bergman, Daniel ; Deshpande, Atul ; Baras, Alexander S ; Jaffee, Elizabeth M ; Coussens, Lisa M ; Fertig, Elana J ; Popel, Aleksander S</creatorcontrib><description>Abstract Advancements in imaging technologies have revolutionized our ability to deeply profile pathological tissue architectures, generating large volumes of imaging data with unparalleled spatial resolution. This type of data collection, namely, spatial proteomics, offers invaluable insights into various human diseases. Simultaneously, computational algorithms have evolved to manage the increasing dimensionality of spatial proteomics inherent in this progress. Numerous imaging-based computational frameworks, such as computational pathology, have been proposed for research and clinical applications. However, the development of these fields demands diverse domain expertise, creating barriers to their integration and further application. This review seeks to bridge this divide by presenting a comprehensive guideline. We consolidate prevailing computational methods and outline a roadmap from image processing to data-driven, statistics-informed biomarker discovery. Additionally, we explore future perspectives as the field moves toward interfacing with other quantitative domains, holding significant promise for precision care in immuno-oncology.</description><identifier>ISSN: 1467-5463</identifier><identifier>ISSN: 1477-4054</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbae421</identifier><identifier>PMID: 39179248</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Biomarkers ; Biomarkers, Tumor - metabolism ; Cancer immunotherapy ; Computational Biology - methods ; Computer applications ; Data collection ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Medical imaging ; Neoplasms - immunology ; Neoplasms - metabolism ; Oncology ; Proteomics ; Proteomics - methods ; Spatial data ; Spatial discrimination ; Spatial resolution ; Statistical methods</subject><ispartof>Briefings in bioinformatics, 2024-07, Vol.25 (5)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-816742e83b2c2e6970a89c6b38bf59365c0812c2c5e58554406c43ef5507d8123</cites><orcidid>0000-0001-8388-008X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39179248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mi, Haoyang</creatorcontrib><creatorcontrib>Sivagnanam, Shamilene</creatorcontrib><creatorcontrib>Ho, Won Jin</creatorcontrib><creatorcontrib>Zhang, Shuming</creatorcontrib><creatorcontrib>Bergman, Daniel</creatorcontrib><creatorcontrib>Deshpande, Atul</creatorcontrib><creatorcontrib>Baras, Alexander S</creatorcontrib><creatorcontrib>Jaffee, Elizabeth M</creatorcontrib><creatorcontrib>Coussens, Lisa M</creatorcontrib><creatorcontrib>Fertig, Elana J</creatorcontrib><creatorcontrib>Popel, Aleksander S</creatorcontrib><title>Computational methods and biomarker discovery strategies for spatial proteomics: a review in immuno-oncology</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract Advancements in imaging technologies have revolutionized our ability to deeply profile pathological tissue architectures, generating large volumes of imaging data with unparalleled spatial resolution. This type of data collection, namely, spatial proteomics, offers invaluable insights into various human diseases. Simultaneously, computational algorithms have evolved to manage the increasing dimensionality of spatial proteomics inherent in this progress. Numerous imaging-based computational frameworks, such as computational pathology, have been proposed for research and clinical applications. However, the development of these fields demands diverse domain expertise, creating barriers to their integration and further application. This review seeks to bridge this divide by presenting a comprehensive guideline. We consolidate prevailing computational methods and outline a roadmap from image processing to data-driven, statistics-informed biomarker discovery. Additionally, we explore future perspectives as the field moves toward interfacing with other quantitative domains, holding significant promise for precision care in immuno-oncology.</description><subject>Algorithms</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Cancer immunotherapy</subject><subject>Computational Biology - methods</subject><subject>Computer applications</subject><subject>Data collection</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Medical imaging</subject><subject>Neoplasms - immunology</subject><subject>Neoplasms - metabolism</subject><subject>Oncology</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Spatial data</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Statistical methods</subject><issn>1467-5463</issn><issn>1477-4054</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1r3DAQxUVJ6G6TnHoPgkAoFCf6tKzcwpIvCOSSnI0kj7fa2pYr2Qn730dhtzn00LloYH7zGL2H0HdKLijR_NJ6e2mtAcHoF7SkQqlCECkOPvpSFVKUfIG-pbQhhBFV0a9owTVVmolqibpV6Md5MpMPg-lwD9Ov0CRshgZbH3oTf0PEjU8uvELc4jRFM8HaQ8JtiDiNeTGvjTFMEHrv0hU2OMKrhzfsB-z7fh5CEQYXurDeHqPD1nQJTvbvEXq5vXle3RePT3cPq-vHwjHFp6KipRIMKm6ZY1BqRUylXWl5ZVupeSkdqWgeOQmyklIIUjrBoZWSqCZP-BH6sdPNd_2ZIU11n38AXWcGCHOqOdFlLsp0Rs_-QTdhjtmKTFHCtM6G0Uz93FEuhpQitPUYfTZnW1NSf4RQ5xDqfQiZPt1rzraH5pP963oGzndAmMf_Kr0DrQWQcQ</recordid><startdate>20240725</startdate><enddate>20240725</enddate><creator>Mi, Haoyang</creator><creator>Sivagnanam, Shamilene</creator><creator>Ho, Won Jin</creator><creator>Zhang, Shuming</creator><creator>Bergman, Daniel</creator><creator>Deshpande, Atul</creator><creator>Baras, Alexander S</creator><creator>Jaffee, Elizabeth M</creator><creator>Coussens, Lisa M</creator><creator>Fertig, Elana J</creator><creator>Popel, Aleksander S</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8388-008X</orcidid></search><sort><creationdate>20240725</creationdate><title>Computational methods and biomarker discovery strategies for spatial proteomics: a review in immuno-oncology</title><author>Mi, Haoyang ; Sivagnanam, Shamilene ; Ho, Won Jin ; Zhang, Shuming ; Bergman, Daniel ; Deshpande, Atul ; Baras, Alexander S ; Jaffee, Elizabeth M ; Coussens, Lisa M ; Fertig, Elana J ; Popel, Aleksander S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-816742e83b2c2e6970a89c6b38bf59365c0812c2c5e58554406c43ef5507d8123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Cancer immunotherapy</topic><topic>Computational Biology - methods</topic><topic>Computer applications</topic><topic>Data collection</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Medical imaging</topic><topic>Neoplasms - immunology</topic><topic>Neoplasms - metabolism</topic><topic>Oncology</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Spatial data</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mi, Haoyang</creatorcontrib><creatorcontrib>Sivagnanam, Shamilene</creatorcontrib><creatorcontrib>Ho, Won Jin</creatorcontrib><creatorcontrib>Zhang, Shuming</creatorcontrib><creatorcontrib>Bergman, Daniel</creatorcontrib><creatorcontrib>Deshpande, Atul</creatorcontrib><creatorcontrib>Baras, Alexander S</creatorcontrib><creatorcontrib>Jaffee, Elizabeth M</creatorcontrib><creatorcontrib>Coussens, Lisa M</creatorcontrib><creatorcontrib>Fertig, Elana J</creatorcontrib><creatorcontrib>Popel, Aleksander S</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mi, Haoyang</au><au>Sivagnanam, Shamilene</au><au>Ho, Won Jin</au><au>Zhang, Shuming</au><au>Bergman, Daniel</au><au>Deshpande, Atul</au><au>Baras, Alexander S</au><au>Jaffee, Elizabeth M</au><au>Coussens, Lisa M</au><au>Fertig, Elana J</au><au>Popel, Aleksander S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational methods and biomarker discovery strategies for spatial proteomics: a review in immuno-oncology</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2024-07-25</date><risdate>2024</risdate><volume>25</volume><issue>5</issue><issn>1467-5463</issn><issn>1477-4054</issn><eissn>1477-4054</eissn><abstract>Abstract Advancements in imaging technologies have revolutionized our ability to deeply profile pathological tissue architectures, generating large volumes of imaging data with unparalleled spatial resolution. This type of data collection, namely, spatial proteomics, offers invaluable insights into various human diseases. Simultaneously, computational algorithms have evolved to manage the increasing dimensionality of spatial proteomics inherent in this progress. Numerous imaging-based computational frameworks, such as computational pathology, have been proposed for research and clinical applications. However, the development of these fields demands diverse domain expertise, creating barriers to their integration and further application. This review seeks to bridge this divide by presenting a comprehensive guideline. We consolidate prevailing computational methods and outline a roadmap from image processing to data-driven, statistics-informed biomarker discovery. Additionally, we explore future perspectives as the field moves toward interfacing with other quantitative domains, holding significant promise for precision care in immuno-oncology.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>39179248</pmid><doi>10.1093/bib/bbae421</doi><orcidid>https://orcid.org/0000-0001-8388-008X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-5463
ispartof Briefings in bioinformatics, 2024-07, Vol.25 (5)
issn 1467-5463
1477-4054
1477-4054
language eng
recordid cdi_proquest_miscellaneous_3096666129
source MEDLINE; Oxford Journals Open Access Collection; PubMed Central
subjects Algorithms
Biomarkers
Biomarkers, Tumor - metabolism
Cancer immunotherapy
Computational Biology - methods
Computer applications
Data collection
Humans
Image processing
Image Processing, Computer-Assisted - methods
Medical imaging
Neoplasms - immunology
Neoplasms - metabolism
Oncology
Proteomics
Proteomics - methods
Spatial data
Spatial discrimination
Spatial resolution
Statistical methods
title Computational methods and biomarker discovery strategies for spatial proteomics: a review in immuno-oncology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20methods%20and%20biomarker%20discovery%20strategies%20for%20spatial%20proteomics:%20a%20review%20in%20immuno-oncology&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Mi,%20Haoyang&rft.date=2024-07-25&rft.volume=25&rft.issue=5&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbae421&rft_dat=%3Cproquest_cross%3E3096666129%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102997811&rft_id=info:pmid/39179248&rft_oup_id=10.1093/bib/bbae421&rfr_iscdi=true