Causal inference on human behaviour
Making causal inferences regarding human behaviour is difficult given the complex interplay between countless contributors to behaviour, including factors in the external world and our internal states. We provide a non-technical conceptual overview of challenges and opportunities for causal inferenc...
Gespeichert in:
Veröffentlicht in: | Nature human behaviour 2024-08, Vol.8 (8), p.1448-1459 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1459 |
---|---|
container_issue | 8 |
container_start_page | 1448 |
container_title | Nature human behaviour |
container_volume | 8 |
creator | Bailey, Drew H. Jung, Alexander J. Beltz, Adriene M. Eronen, Markus I. Gische, Christian Hamaker, Ellen L. Kording, Konrad P. Lebel, Catherine Lindquist, Martin A. Moeller, Julia Razi, Adeel Rohrer, Julia M. Zhang, Baobao Murayama, Kou |
description | Making causal inferences regarding human behaviour is difficult given the complex interplay between countless contributors to behaviour, including factors in the external world and our internal states. We provide a non-technical conceptual overview of challenges and opportunities for causal inference on human behaviour. The challenges include our ambiguous causal language and thinking, statistical under- or over-control, effect heterogeneity, interference, timescales of effects and complex treatments. We explain how methods optimized for addressing one of these challenges frequently exacerbate other problems. We thus argue that clearly specified research questions are key to improving causal inference from data. We suggest a triangulation approach that compares causal estimates from (quasi-)experimental research with causal estimates generated from observational data and theoretical assumptions. This approach allows a systematic investigation of theoretical and methodological factors that might lead estimates to converge or diverge across studies.
In this Review, Drew Bailey et al. present an accessible, non-technical overview of key challenges for causal inference in studies of human behaviour as well as methodological solutions to these challenges. |
doi_str_mv | 10.1038/s41562-024-01939-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3096664616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3096664616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-cf4681fc7b3c0394d5c774c605ec95f3996aa5d8242899a5e0ec54a6d08d37e73</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MottR-AQ-y0IuXaLJ5bY5SfEHBi55DNjtrt-yjJl3BfnrTbn3gwdMMzG_-M_wQOqfkihKWXQdOhUwxSTkmVDONt0donDKtMGOKH__qR2gawoqQHca1kqdoxDRVWnE1RrO57YOtk6otwUPrIOnaZNk3tk1yWNr3quv9GTopbR1geqgT9HJ3-zx_wIun-8f5zQK7VMgNdiWXGS2dypkjTPNCOKW4k0SA06JkWktrRZGlPM20tgIIOMGtLEhWMAWKTdDlkLv23VsPYWOaKjioa9tC1wfDiJZSckllRGd_0FV8tI3f7SkuicxEpNKBcr4LwUNp1r5qrP8wlJidRTNYNNGi2Vs027h0cYju8waK75UvZxFgAxDiqH0F_3P7n9hPHUV6-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096460685</pqid></control><display><type>article</type><title>Causal inference on human behaviour</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Bailey, Drew H. ; Jung, Alexander J. ; Beltz, Adriene M. ; Eronen, Markus I. ; Gische, Christian ; Hamaker, Ellen L. ; Kording, Konrad P. ; Lebel, Catherine ; Lindquist, Martin A. ; Moeller, Julia ; Razi, Adeel ; Rohrer, Julia M. ; Zhang, Baobao ; Murayama, Kou</creator><creatorcontrib>Bailey, Drew H. ; Jung, Alexander J. ; Beltz, Adriene M. ; Eronen, Markus I. ; Gische, Christian ; Hamaker, Ellen L. ; Kording, Konrad P. ; Lebel, Catherine ; Lindquist, Martin A. ; Moeller, Julia ; Razi, Adeel ; Rohrer, Julia M. ; Zhang, Baobao ; Murayama, Kou</creatorcontrib><description>Making causal inferences regarding human behaviour is difficult given the complex interplay between countless contributors to behaviour, including factors in the external world and our internal states. We provide a non-technical conceptual overview of challenges and opportunities for causal inference on human behaviour. The challenges include our ambiguous causal language and thinking, statistical under- or over-control, effect heterogeneity, interference, timescales of effects and complex treatments. We explain how methods optimized for addressing one of these challenges frequently exacerbate other problems. We thus argue that clearly specified research questions are key to improving causal inference from data. We suggest a triangulation approach that compares causal estimates from (quasi-)experimental research with causal estimates generated from observational data and theoretical assumptions. This approach allows a systematic investigation of theoretical and methodological factors that might lead estimates to converge or diverge across studies.
In this Review, Drew Bailey et al. present an accessible, non-technical overview of key challenges for causal inference in studies of human behaviour as well as methodological solutions to these challenges.</description><identifier>ISSN: 2397-3374</identifier><identifier>EISSN: 2397-3374</identifier><identifier>DOI: 10.1038/s41562-024-01939-z</identifier><identifier>PMID: 39179747</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>4014/159 ; 4014/4013 ; 4014/477/2811 ; 4014/523 ; Ambiguity ; Behavior ; Behavioral Sciences ; Biomedical and Life Sciences ; Causality ; Challenges ; Estimates ; Experimental Psychology ; Humans ; Inference ; Influence ; Life Sciences ; Microeconomics ; Neurosciences ; Personality and Social Psychology ; Psychology ; Research Design ; Researchers ; Review Article ; Triangulation ; Variables</subject><ispartof>Nature human behaviour, 2024-08, Vol.8 (8), p.1448-1459</ispartof><rights>Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-cf4681fc7b3c0394d5c774c605ec95f3996aa5d8242899a5e0ec54a6d08d37e73</cites><orcidid>0000-0002-0344-4032 ; 0000-0003-2902-9600 ; 0000-0003-3699-9066 ; 0000-0001-8564-4523 ; 0000-0001-7217-5035 ; 0000-0001-5754-8083 ; 0000-0002-7812-1107 ; 0000-0001-8408-4499 ; 0000-0003-2028-3338 ; 0000-0002-0779-9439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41562-024-01939-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41562-024-01939-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39179747$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bailey, Drew H.</creatorcontrib><creatorcontrib>Jung, Alexander J.</creatorcontrib><creatorcontrib>Beltz, Adriene M.</creatorcontrib><creatorcontrib>Eronen, Markus I.</creatorcontrib><creatorcontrib>Gische, Christian</creatorcontrib><creatorcontrib>Hamaker, Ellen L.</creatorcontrib><creatorcontrib>Kording, Konrad P.</creatorcontrib><creatorcontrib>Lebel, Catherine</creatorcontrib><creatorcontrib>Lindquist, Martin A.</creatorcontrib><creatorcontrib>Moeller, Julia</creatorcontrib><creatorcontrib>Razi, Adeel</creatorcontrib><creatorcontrib>Rohrer, Julia M.</creatorcontrib><creatorcontrib>Zhang, Baobao</creatorcontrib><creatorcontrib>Murayama, Kou</creatorcontrib><title>Causal inference on human behaviour</title><title>Nature human behaviour</title><addtitle>Nat Hum Behav</addtitle><addtitle>Nat Hum Behav</addtitle><description>Making causal inferences regarding human behaviour is difficult given the complex interplay between countless contributors to behaviour, including factors in the external world and our internal states. We provide a non-technical conceptual overview of challenges and opportunities for causal inference on human behaviour. The challenges include our ambiguous causal language and thinking, statistical under- or over-control, effect heterogeneity, interference, timescales of effects and complex treatments. We explain how methods optimized for addressing one of these challenges frequently exacerbate other problems. We thus argue that clearly specified research questions are key to improving causal inference from data. We suggest a triangulation approach that compares causal estimates from (quasi-)experimental research with causal estimates generated from observational data and theoretical assumptions. This approach allows a systematic investigation of theoretical and methodological factors that might lead estimates to converge or diverge across studies.
In this Review, Drew Bailey et al. present an accessible, non-technical overview of key challenges for causal inference in studies of human behaviour as well as methodological solutions to these challenges.</description><subject>4014/159</subject><subject>4014/4013</subject><subject>4014/477/2811</subject><subject>4014/523</subject><subject>Ambiguity</subject><subject>Behavior</subject><subject>Behavioral Sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Causality</subject><subject>Challenges</subject><subject>Estimates</subject><subject>Experimental Psychology</subject><subject>Humans</subject><subject>Inference</subject><subject>Influence</subject><subject>Life Sciences</subject><subject>Microeconomics</subject><subject>Neurosciences</subject><subject>Personality and Social Psychology</subject><subject>Psychology</subject><subject>Research Design</subject><subject>Researchers</subject><subject>Review Article</subject><subject>Triangulation</subject><subject>Variables</subject><issn>2397-3374</issn><issn>2397-3374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLAzEQx4MottR-AQ-y0IuXaLJ5bY5SfEHBi55DNjtrt-yjJl3BfnrTbn3gwdMMzG_-M_wQOqfkihKWXQdOhUwxSTkmVDONt0donDKtMGOKH__qR2gawoqQHca1kqdoxDRVWnE1RrO57YOtk6otwUPrIOnaZNk3tk1yWNr3quv9GTopbR1geqgT9HJ3-zx_wIun-8f5zQK7VMgNdiWXGS2dypkjTPNCOKW4k0SA06JkWktrRZGlPM20tgIIOMGtLEhWMAWKTdDlkLv23VsPYWOaKjioa9tC1wfDiJZSckllRGd_0FV8tI3f7SkuicxEpNKBcr4LwUNp1r5qrP8wlJidRTNYNNGi2Vs027h0cYju8waK75UvZxFgAxDiqH0F_3P7n9hPHUV6-w</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Bailey, Drew H.</creator><creator>Jung, Alexander J.</creator><creator>Beltz, Adriene M.</creator><creator>Eronen, Markus I.</creator><creator>Gische, Christian</creator><creator>Hamaker, Ellen L.</creator><creator>Kording, Konrad P.</creator><creator>Lebel, Catherine</creator><creator>Lindquist, Martin A.</creator><creator>Moeller, Julia</creator><creator>Razi, Adeel</creator><creator>Rohrer, Julia M.</creator><creator>Zhang, Baobao</creator><creator>Murayama, Kou</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0344-4032</orcidid><orcidid>https://orcid.org/0000-0003-2902-9600</orcidid><orcidid>https://orcid.org/0000-0003-3699-9066</orcidid><orcidid>https://orcid.org/0000-0001-8564-4523</orcidid><orcidid>https://orcid.org/0000-0001-7217-5035</orcidid><orcidid>https://orcid.org/0000-0001-5754-8083</orcidid><orcidid>https://orcid.org/0000-0002-7812-1107</orcidid><orcidid>https://orcid.org/0000-0001-8408-4499</orcidid><orcidid>https://orcid.org/0000-0003-2028-3338</orcidid><orcidid>https://orcid.org/0000-0002-0779-9439</orcidid></search><sort><creationdate>20240801</creationdate><title>Causal inference on human behaviour</title><author>Bailey, Drew H. ; Jung, Alexander J. ; Beltz, Adriene M. ; Eronen, Markus I. ; Gische, Christian ; Hamaker, Ellen L. ; Kording, Konrad P. ; Lebel, Catherine ; Lindquist, Martin A. ; Moeller, Julia ; Razi, Adeel ; Rohrer, Julia M. ; Zhang, Baobao ; Murayama, Kou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-cf4681fc7b3c0394d5c774c605ec95f3996aa5d8242899a5e0ec54a6d08d37e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>4014/159</topic><topic>4014/4013</topic><topic>4014/477/2811</topic><topic>4014/523</topic><topic>Ambiguity</topic><topic>Behavior</topic><topic>Behavioral Sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Causality</topic><topic>Challenges</topic><topic>Estimates</topic><topic>Experimental Psychology</topic><topic>Humans</topic><topic>Inference</topic><topic>Influence</topic><topic>Life Sciences</topic><topic>Microeconomics</topic><topic>Neurosciences</topic><topic>Personality and Social Psychology</topic><topic>Psychology</topic><topic>Research Design</topic><topic>Researchers</topic><topic>Review Article</topic><topic>Triangulation</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bailey, Drew H.</creatorcontrib><creatorcontrib>Jung, Alexander J.</creatorcontrib><creatorcontrib>Beltz, Adriene M.</creatorcontrib><creatorcontrib>Eronen, Markus I.</creatorcontrib><creatorcontrib>Gische, Christian</creatorcontrib><creatorcontrib>Hamaker, Ellen L.</creatorcontrib><creatorcontrib>Kording, Konrad P.</creatorcontrib><creatorcontrib>Lebel, Catherine</creatorcontrib><creatorcontrib>Lindquist, Martin A.</creatorcontrib><creatorcontrib>Moeller, Julia</creatorcontrib><creatorcontrib>Razi, Adeel</creatorcontrib><creatorcontrib>Rohrer, Julia M.</creatorcontrib><creatorcontrib>Zhang, Baobao</creatorcontrib><creatorcontrib>Murayama, Kou</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>MEDLINE - Academic</collection><jtitle>Nature human behaviour</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bailey, Drew H.</au><au>Jung, Alexander J.</au><au>Beltz, Adriene M.</au><au>Eronen, Markus I.</au><au>Gische, Christian</au><au>Hamaker, Ellen L.</au><au>Kording, Konrad P.</au><au>Lebel, Catherine</au><au>Lindquist, Martin A.</au><au>Moeller, Julia</au><au>Razi, Adeel</au><au>Rohrer, Julia M.</au><au>Zhang, Baobao</au><au>Murayama, Kou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Causal inference on human behaviour</atitle><jtitle>Nature human behaviour</jtitle><stitle>Nat Hum Behav</stitle><addtitle>Nat Hum Behav</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>8</volume><issue>8</issue><spage>1448</spage><epage>1459</epage><pages>1448-1459</pages><issn>2397-3374</issn><eissn>2397-3374</eissn><abstract>Making causal inferences regarding human behaviour is difficult given the complex interplay between countless contributors to behaviour, including factors in the external world and our internal states. We provide a non-technical conceptual overview of challenges and opportunities for causal inference on human behaviour. The challenges include our ambiguous causal language and thinking, statistical under- or over-control, effect heterogeneity, interference, timescales of effects and complex treatments. We explain how methods optimized for addressing one of these challenges frequently exacerbate other problems. We thus argue that clearly specified research questions are key to improving causal inference from data. We suggest a triangulation approach that compares causal estimates from (quasi-)experimental research with causal estimates generated from observational data and theoretical assumptions. This approach allows a systematic investigation of theoretical and methodological factors that might lead estimates to converge or diverge across studies.
In this Review, Drew Bailey et al. present an accessible, non-technical overview of key challenges for causal inference in studies of human behaviour as well as methodological solutions to these challenges.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39179747</pmid><doi>10.1038/s41562-024-01939-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0344-4032</orcidid><orcidid>https://orcid.org/0000-0003-2902-9600</orcidid><orcidid>https://orcid.org/0000-0003-3699-9066</orcidid><orcidid>https://orcid.org/0000-0001-8564-4523</orcidid><orcidid>https://orcid.org/0000-0001-7217-5035</orcidid><orcidid>https://orcid.org/0000-0001-5754-8083</orcidid><orcidid>https://orcid.org/0000-0002-7812-1107</orcidid><orcidid>https://orcid.org/0000-0001-8408-4499</orcidid><orcidid>https://orcid.org/0000-0003-2028-3338</orcidid><orcidid>https://orcid.org/0000-0002-0779-9439</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2397-3374 |
ispartof | Nature human behaviour, 2024-08, Vol.8 (8), p.1448-1459 |
issn | 2397-3374 2397-3374 |
language | eng |
recordid | cdi_proquest_miscellaneous_3096664616 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 4014/159 4014/4013 4014/477/2811 4014/523 Ambiguity Behavior Behavioral Sciences Biomedical and Life Sciences Causality Challenges Estimates Experimental Psychology Humans Inference Influence Life Sciences Microeconomics Neurosciences Personality and Social Psychology Psychology Research Design Researchers Review Article Triangulation Variables |
title | Causal inference on human behaviour |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Causal%20inference%20on%20human%20behaviour&rft.jtitle=Nature%20human%20behaviour&rft.au=Bailey,%20Drew%20H.&rft.date=2024-08-01&rft.volume=8&rft.issue=8&rft.spage=1448&rft.epage=1459&rft.pages=1448-1459&rft.issn=2397-3374&rft.eissn=2397-3374&rft_id=info:doi/10.1038/s41562-024-01939-z&rft_dat=%3Cproquest_cross%3E3096664616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096460685&rft_id=info:pmid/39179747&rfr_iscdi=true |