Causal inference on human behaviour

Making causal inferences regarding human behaviour is difficult given the complex interplay between countless contributors to behaviour, including factors in the external world and our internal states. We provide a non-technical conceptual overview of challenges and opportunities for causal inferenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature human behaviour 2024-08, Vol.8 (8), p.1448-1459
Hauptverfasser: Bailey, Drew H., Jung, Alexander J., Beltz, Adriene M., Eronen, Markus I., Gische, Christian, Hamaker, Ellen L., Kording, Konrad P., Lebel, Catherine, Lindquist, Martin A., Moeller, Julia, Razi, Adeel, Rohrer, Julia M., Zhang, Baobao, Murayama, Kou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1459
container_issue 8
container_start_page 1448
container_title Nature human behaviour
container_volume 8
creator Bailey, Drew H.
Jung, Alexander J.
Beltz, Adriene M.
Eronen, Markus I.
Gische, Christian
Hamaker, Ellen L.
Kording, Konrad P.
Lebel, Catherine
Lindquist, Martin A.
Moeller, Julia
Razi, Adeel
Rohrer, Julia M.
Zhang, Baobao
Murayama, Kou
description Making causal inferences regarding human behaviour is difficult given the complex interplay between countless contributors to behaviour, including factors in the external world and our internal states. We provide a non-technical conceptual overview of challenges and opportunities for causal inference on human behaviour. The challenges include our ambiguous causal language and thinking, statistical under- or over-control, effect heterogeneity, interference, timescales of effects and complex treatments. We explain how methods optimized for addressing one of these challenges frequently exacerbate other problems. We thus argue that clearly specified research questions are key to improving causal inference from data. We suggest a triangulation approach that compares causal estimates from (quasi-)experimental research with causal estimates generated from observational data and theoretical assumptions. This approach allows a systematic investigation of theoretical and methodological factors that might lead estimates to converge or diverge across studies. In this Review, Drew Bailey et al. present an accessible, non-technical overview of key challenges for causal inference in studies of human behaviour as well as methodological solutions to these challenges.
doi_str_mv 10.1038/s41562-024-01939-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3096664616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3096664616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-cf4681fc7b3c0394d5c774c605ec95f3996aa5d8242899a5e0ec54a6d08d37e73</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MottR-AQ-y0IuXaLJ5bY5SfEHBi55DNjtrt-yjJl3BfnrTbn3gwdMMzG_-M_wQOqfkihKWXQdOhUwxSTkmVDONt0donDKtMGOKH__qR2gawoqQHca1kqdoxDRVWnE1RrO57YOtk6otwUPrIOnaZNk3tk1yWNr3quv9GTopbR1geqgT9HJ3-zx_wIun-8f5zQK7VMgNdiWXGS2dypkjTPNCOKW4k0SA06JkWktrRZGlPM20tgIIOMGtLEhWMAWKTdDlkLv23VsPYWOaKjioa9tC1wfDiJZSckllRGd_0FV8tI3f7SkuicxEpNKBcr4LwUNp1r5qrP8wlJidRTNYNNGi2Vs027h0cYju8waK75UvZxFgAxDiqH0F_3P7n9hPHUV6-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096460685</pqid></control><display><type>article</type><title>Causal inference on human behaviour</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Bailey, Drew H. ; Jung, Alexander J. ; Beltz, Adriene M. ; Eronen, Markus I. ; Gische, Christian ; Hamaker, Ellen L. ; Kording, Konrad P. ; Lebel, Catherine ; Lindquist, Martin A. ; Moeller, Julia ; Razi, Adeel ; Rohrer, Julia M. ; Zhang, Baobao ; Murayama, Kou</creator><creatorcontrib>Bailey, Drew H. ; Jung, Alexander J. ; Beltz, Adriene M. ; Eronen, Markus I. ; Gische, Christian ; Hamaker, Ellen L. ; Kording, Konrad P. ; Lebel, Catherine ; Lindquist, Martin A. ; Moeller, Julia ; Razi, Adeel ; Rohrer, Julia M. ; Zhang, Baobao ; Murayama, Kou</creatorcontrib><description>Making causal inferences regarding human behaviour is difficult given the complex interplay between countless contributors to behaviour, including factors in the external world and our internal states. We provide a non-technical conceptual overview of challenges and opportunities for causal inference on human behaviour. The challenges include our ambiguous causal language and thinking, statistical under- or over-control, effect heterogeneity, interference, timescales of effects and complex treatments. We explain how methods optimized for addressing one of these challenges frequently exacerbate other problems. We thus argue that clearly specified research questions are key to improving causal inference from data. We suggest a triangulation approach that compares causal estimates from (quasi-)experimental research with causal estimates generated from observational data and theoretical assumptions. This approach allows a systematic investigation of theoretical and methodological factors that might lead estimates to converge or diverge across studies. In this Review, Drew Bailey et al. present an accessible, non-technical overview of key challenges for causal inference in studies of human behaviour as well as methodological solutions to these challenges.</description><identifier>ISSN: 2397-3374</identifier><identifier>EISSN: 2397-3374</identifier><identifier>DOI: 10.1038/s41562-024-01939-z</identifier><identifier>PMID: 39179747</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>4014/159 ; 4014/4013 ; 4014/477/2811 ; 4014/523 ; Ambiguity ; Behavior ; Behavioral Sciences ; Biomedical and Life Sciences ; Causality ; Challenges ; Estimates ; Experimental Psychology ; Humans ; Inference ; Influence ; Life Sciences ; Microeconomics ; Neurosciences ; Personality and Social Psychology ; Psychology ; Research Design ; Researchers ; Review Article ; Triangulation ; Variables</subject><ispartof>Nature human behaviour, 2024-08, Vol.8 (8), p.1448-1459</ispartof><rights>Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-cf4681fc7b3c0394d5c774c605ec95f3996aa5d8242899a5e0ec54a6d08d37e73</cites><orcidid>0000-0002-0344-4032 ; 0000-0003-2902-9600 ; 0000-0003-3699-9066 ; 0000-0001-8564-4523 ; 0000-0001-7217-5035 ; 0000-0001-5754-8083 ; 0000-0002-7812-1107 ; 0000-0001-8408-4499 ; 0000-0003-2028-3338 ; 0000-0002-0779-9439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41562-024-01939-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41562-024-01939-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39179747$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bailey, Drew H.</creatorcontrib><creatorcontrib>Jung, Alexander J.</creatorcontrib><creatorcontrib>Beltz, Adriene M.</creatorcontrib><creatorcontrib>Eronen, Markus I.</creatorcontrib><creatorcontrib>Gische, Christian</creatorcontrib><creatorcontrib>Hamaker, Ellen L.</creatorcontrib><creatorcontrib>Kording, Konrad P.</creatorcontrib><creatorcontrib>Lebel, Catherine</creatorcontrib><creatorcontrib>Lindquist, Martin A.</creatorcontrib><creatorcontrib>Moeller, Julia</creatorcontrib><creatorcontrib>Razi, Adeel</creatorcontrib><creatorcontrib>Rohrer, Julia M.</creatorcontrib><creatorcontrib>Zhang, Baobao</creatorcontrib><creatorcontrib>Murayama, Kou</creatorcontrib><title>Causal inference on human behaviour</title><title>Nature human behaviour</title><addtitle>Nat Hum Behav</addtitle><addtitle>Nat Hum Behav</addtitle><description>Making causal inferences regarding human behaviour is difficult given the complex interplay between countless contributors to behaviour, including factors in the external world and our internal states. We provide a non-technical conceptual overview of challenges and opportunities for causal inference on human behaviour. The challenges include our ambiguous causal language and thinking, statistical under- or over-control, effect heterogeneity, interference, timescales of effects and complex treatments. We explain how methods optimized for addressing one of these challenges frequently exacerbate other problems. We thus argue that clearly specified research questions are key to improving causal inference from data. We suggest a triangulation approach that compares causal estimates from (quasi-)experimental research with causal estimates generated from observational data and theoretical assumptions. This approach allows a systematic investigation of theoretical and methodological factors that might lead estimates to converge or diverge across studies. In this Review, Drew Bailey et al. present an accessible, non-technical overview of key challenges for causal inference in studies of human behaviour as well as methodological solutions to these challenges.</description><subject>4014/159</subject><subject>4014/4013</subject><subject>4014/477/2811</subject><subject>4014/523</subject><subject>Ambiguity</subject><subject>Behavior</subject><subject>Behavioral Sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Causality</subject><subject>Challenges</subject><subject>Estimates</subject><subject>Experimental Psychology</subject><subject>Humans</subject><subject>Inference</subject><subject>Influence</subject><subject>Life Sciences</subject><subject>Microeconomics</subject><subject>Neurosciences</subject><subject>Personality and Social Psychology</subject><subject>Psychology</subject><subject>Research Design</subject><subject>Researchers</subject><subject>Review Article</subject><subject>Triangulation</subject><subject>Variables</subject><issn>2397-3374</issn><issn>2397-3374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLAzEQx4MottR-AQ-y0IuXaLJ5bY5SfEHBi55DNjtrt-yjJl3BfnrTbn3gwdMMzG_-M_wQOqfkihKWXQdOhUwxSTkmVDONt0donDKtMGOKH__qR2gawoqQHca1kqdoxDRVWnE1RrO57YOtk6otwUPrIOnaZNk3tk1yWNr3quv9GTopbR1geqgT9HJ3-zx_wIun-8f5zQK7VMgNdiWXGS2dypkjTPNCOKW4k0SA06JkWktrRZGlPM20tgIIOMGtLEhWMAWKTdDlkLv23VsPYWOaKjioa9tC1wfDiJZSckllRGd_0FV8tI3f7SkuicxEpNKBcr4LwUNp1r5qrP8wlJidRTNYNNGi2Vs027h0cYju8waK75UvZxFgAxDiqH0F_3P7n9hPHUV6-w</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Bailey, Drew H.</creator><creator>Jung, Alexander J.</creator><creator>Beltz, Adriene M.</creator><creator>Eronen, Markus I.</creator><creator>Gische, Christian</creator><creator>Hamaker, Ellen L.</creator><creator>Kording, Konrad P.</creator><creator>Lebel, Catherine</creator><creator>Lindquist, Martin A.</creator><creator>Moeller, Julia</creator><creator>Razi, Adeel</creator><creator>Rohrer, Julia M.</creator><creator>Zhang, Baobao</creator><creator>Murayama, Kou</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0344-4032</orcidid><orcidid>https://orcid.org/0000-0003-2902-9600</orcidid><orcidid>https://orcid.org/0000-0003-3699-9066</orcidid><orcidid>https://orcid.org/0000-0001-8564-4523</orcidid><orcidid>https://orcid.org/0000-0001-7217-5035</orcidid><orcidid>https://orcid.org/0000-0001-5754-8083</orcidid><orcidid>https://orcid.org/0000-0002-7812-1107</orcidid><orcidid>https://orcid.org/0000-0001-8408-4499</orcidid><orcidid>https://orcid.org/0000-0003-2028-3338</orcidid><orcidid>https://orcid.org/0000-0002-0779-9439</orcidid></search><sort><creationdate>20240801</creationdate><title>Causal inference on human behaviour</title><author>Bailey, Drew H. ; Jung, Alexander J. ; Beltz, Adriene M. ; Eronen, Markus I. ; Gische, Christian ; Hamaker, Ellen L. ; Kording, Konrad P. ; Lebel, Catherine ; Lindquist, Martin A. ; Moeller, Julia ; Razi, Adeel ; Rohrer, Julia M. ; Zhang, Baobao ; Murayama, Kou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-cf4681fc7b3c0394d5c774c605ec95f3996aa5d8242899a5e0ec54a6d08d37e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>4014/159</topic><topic>4014/4013</topic><topic>4014/477/2811</topic><topic>4014/523</topic><topic>Ambiguity</topic><topic>Behavior</topic><topic>Behavioral Sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Causality</topic><topic>Challenges</topic><topic>Estimates</topic><topic>Experimental Psychology</topic><topic>Humans</topic><topic>Inference</topic><topic>Influence</topic><topic>Life Sciences</topic><topic>Microeconomics</topic><topic>Neurosciences</topic><topic>Personality and Social Psychology</topic><topic>Psychology</topic><topic>Research Design</topic><topic>Researchers</topic><topic>Review Article</topic><topic>Triangulation</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bailey, Drew H.</creatorcontrib><creatorcontrib>Jung, Alexander J.</creatorcontrib><creatorcontrib>Beltz, Adriene M.</creatorcontrib><creatorcontrib>Eronen, Markus I.</creatorcontrib><creatorcontrib>Gische, Christian</creatorcontrib><creatorcontrib>Hamaker, Ellen L.</creatorcontrib><creatorcontrib>Kording, Konrad P.</creatorcontrib><creatorcontrib>Lebel, Catherine</creatorcontrib><creatorcontrib>Lindquist, Martin A.</creatorcontrib><creatorcontrib>Moeller, Julia</creatorcontrib><creatorcontrib>Razi, Adeel</creatorcontrib><creatorcontrib>Rohrer, Julia M.</creatorcontrib><creatorcontrib>Zhang, Baobao</creatorcontrib><creatorcontrib>Murayama, Kou</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>MEDLINE - Academic</collection><jtitle>Nature human behaviour</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bailey, Drew H.</au><au>Jung, Alexander J.</au><au>Beltz, Adriene M.</au><au>Eronen, Markus I.</au><au>Gische, Christian</au><au>Hamaker, Ellen L.</au><au>Kording, Konrad P.</au><au>Lebel, Catherine</au><au>Lindquist, Martin A.</au><au>Moeller, Julia</au><au>Razi, Adeel</au><au>Rohrer, Julia M.</au><au>Zhang, Baobao</au><au>Murayama, Kou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Causal inference on human behaviour</atitle><jtitle>Nature human behaviour</jtitle><stitle>Nat Hum Behav</stitle><addtitle>Nat Hum Behav</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>8</volume><issue>8</issue><spage>1448</spage><epage>1459</epage><pages>1448-1459</pages><issn>2397-3374</issn><eissn>2397-3374</eissn><abstract>Making causal inferences regarding human behaviour is difficult given the complex interplay between countless contributors to behaviour, including factors in the external world and our internal states. We provide a non-technical conceptual overview of challenges and opportunities for causal inference on human behaviour. The challenges include our ambiguous causal language and thinking, statistical under- or over-control, effect heterogeneity, interference, timescales of effects and complex treatments. We explain how methods optimized for addressing one of these challenges frequently exacerbate other problems. We thus argue that clearly specified research questions are key to improving causal inference from data. We suggest a triangulation approach that compares causal estimates from (quasi-)experimental research with causal estimates generated from observational data and theoretical assumptions. This approach allows a systematic investigation of theoretical and methodological factors that might lead estimates to converge or diverge across studies. In this Review, Drew Bailey et al. present an accessible, non-technical overview of key challenges for causal inference in studies of human behaviour as well as methodological solutions to these challenges.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39179747</pmid><doi>10.1038/s41562-024-01939-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0344-4032</orcidid><orcidid>https://orcid.org/0000-0003-2902-9600</orcidid><orcidid>https://orcid.org/0000-0003-3699-9066</orcidid><orcidid>https://orcid.org/0000-0001-8564-4523</orcidid><orcidid>https://orcid.org/0000-0001-7217-5035</orcidid><orcidid>https://orcid.org/0000-0001-5754-8083</orcidid><orcidid>https://orcid.org/0000-0002-7812-1107</orcidid><orcidid>https://orcid.org/0000-0001-8408-4499</orcidid><orcidid>https://orcid.org/0000-0003-2028-3338</orcidid><orcidid>https://orcid.org/0000-0002-0779-9439</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2397-3374
ispartof Nature human behaviour, 2024-08, Vol.8 (8), p.1448-1459
issn 2397-3374
2397-3374
language eng
recordid cdi_proquest_miscellaneous_3096664616
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 4014/159
4014/4013
4014/477/2811
4014/523
Ambiguity
Behavior
Behavioral Sciences
Biomedical and Life Sciences
Causality
Challenges
Estimates
Experimental Psychology
Humans
Inference
Influence
Life Sciences
Microeconomics
Neurosciences
Personality and Social Psychology
Psychology
Research Design
Researchers
Review Article
Triangulation
Variables
title Causal inference on human behaviour
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Causal%20inference%20on%20human%20behaviour&rft.jtitle=Nature%20human%20behaviour&rft.au=Bailey,%20Drew%20H.&rft.date=2024-08-01&rft.volume=8&rft.issue=8&rft.spage=1448&rft.epage=1459&rft.pages=1448-1459&rft.issn=2397-3374&rft.eissn=2397-3374&rft_id=info:doi/10.1038/s41562-024-01939-z&rft_dat=%3Cproquest_cross%3E3096664616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096460685&rft_id=info:pmid/39179747&rfr_iscdi=true