Accurate computation of quantum excited states with neural networks

We present an algorithm to estimate the excited states of a quantum system by variational Monte Carlo, which has no free parameters and requires no orthogonalization of the states, instead transforming the problem into that of finding the ground state of an expanded system. Arbitrary observables can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2024-08, Vol.385 (6711), p.eadn0137
Hauptverfasser: Pfau, David, Axelrod, Simon, Sutterud, Halvard, von Glehn, Ingrid, Spencer, James S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6711
container_start_page eadn0137
container_title Science (American Association for the Advancement of Science)
container_volume 385
creator Pfau, David
Axelrod, Simon
Sutterud, Halvard
von Glehn, Ingrid
Spencer, James S
description We present an algorithm to estimate the excited states of a quantum system by variational Monte Carlo, which has no free parameters and requires no orthogonalization of the states, instead transforming the problem into that of finding the ground state of an expanded system. Arbitrary observables can be calculated, including off-diagonal expectations, such as the transition dipole moment. The method works particularly well with neural network ansätze, and by combining this method with the FermiNet and Psiformer ansätze, we can accurately recover excitation energies and oscillator strengths on a range of molecules. We achieve accurate vertical excitation energies on benzene-scale molecules, including challenging double excitations. Beyond the examples presented in this work, we expect that this technique will be of interest for atomic, nuclear, and condensed matter physics.
doi_str_mv 10.1126/science.adn0137
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3096279010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095611954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c209t-f5afe19fca668e17b427729a8e635e9f442af5763d7428cc9224b1fff9a63edd3</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EoqUws6FILCyhfiR2PFYVL6kSC8yR61yLlCRu_VDh3-OqgYHpDuc7R1cfQtcE3xNC-dzrFgYN96oZMGHiBE0JlmUuKWanaIox43mFRTlBF95vME6ZZOdowiQRtKJ0ipYLraNTATJt-20MKrR2yKzJdlENIfYZfOk2QJP5FIHP9m34yAZIlS6dsLfu01-iM6M6D1fjnaH3x4e35XO-en16WS5WuaZYhtyUygCRRivOKyBiXVAhqFQVcFaCNEVBlSkFZ40oaKW1pLRYE2OMVJxB07AZujvubp3dRfCh7luvoevUADb6mmHJqZCY4ITe_kM3NrohfXegSk6ILItEzY-UdtZ7B6beurZX7rsmuD74rUe_9eg3NW7G3bjuofnjf4WyHzyreMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095611954</pqid></control><display><type>article</type><title>Accurate computation of quantum excited states with neural networks</title><source>Science Magazine</source><creator>Pfau, David ; Axelrod, Simon ; Sutterud, Halvard ; von Glehn, Ingrid ; Spencer, James S</creator><creatorcontrib>Pfau, David ; Axelrod, Simon ; Sutterud, Halvard ; von Glehn, Ingrid ; Spencer, James S</creatorcontrib><description>We present an algorithm to estimate the excited states of a quantum system by variational Monte Carlo, which has no free parameters and requires no orthogonalization of the states, instead transforming the problem into that of finding the ground state of an expanded system. Arbitrary observables can be calculated, including off-diagonal expectations, such as the transition dipole moment. The method works particularly well with neural network ansätze, and by combining this method with the FermiNet and Psiformer ansätze, we can accurately recover excitation energies and oscillator strengths on a range of molecules. We achieve accurate vertical excitation energies on benzene-scale molecules, including challenging double excitations. Beyond the examples presented in this work, we expect that this technique will be of interest for atomic, nuclear, and condensed matter physics.</description><identifier>ISSN: 0036-8075</identifier><identifier>ISSN: 1095-9203</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.adn0137</identifier><identifier>PMID: 39172822</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Accuracy ; Adiabatic ; Artificial neural networks ; Atomic properties ; Benchmarks ; Benzene ; Chemical bonds ; Computation ; Computer applications ; Condensed matter physics ; Couplings ; Deep learning ; Estimates ; Excitation ; First principles ; Fluorescent indicators ; Ground state ; Hamiltonian functions ; Hydrocarbons ; Light emitting diodes ; Machine learning ; Mathematical analysis ; Mathematical models ; Mathematics ; Molecular modelling ; Networks ; Neural networks ; Nuclear physics ; Organic Chemistry ; Oscillator strengths ; Photovoltaic cells ; Physics ; Potential energy ; Prior Learning ; Quantum chemistry ; Quantum dots ; Solar cells ; Wave functions</subject><ispartof>Science (American Association for the Advancement of Science), 2024-08, Vol.385 (6711), p.eadn0137</ispartof><rights>Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c209t-f5afe19fca668e17b427729a8e635e9f442af5763d7428cc9224b1fff9a63edd3</cites><orcidid>0000-0003-0834-8653 ; 0000-0003-1635-1668 ; 0000-0003-2936-0133 ; 0009-0008-3102-196X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39172822$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pfau, David</creatorcontrib><creatorcontrib>Axelrod, Simon</creatorcontrib><creatorcontrib>Sutterud, Halvard</creatorcontrib><creatorcontrib>von Glehn, Ingrid</creatorcontrib><creatorcontrib>Spencer, James S</creatorcontrib><title>Accurate computation of quantum excited states with neural networks</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>We present an algorithm to estimate the excited states of a quantum system by variational Monte Carlo, which has no free parameters and requires no orthogonalization of the states, instead transforming the problem into that of finding the ground state of an expanded system. Arbitrary observables can be calculated, including off-diagonal expectations, such as the transition dipole moment. The method works particularly well with neural network ansätze, and by combining this method with the FermiNet and Psiformer ansätze, we can accurately recover excitation energies and oscillator strengths on a range of molecules. We achieve accurate vertical excitation energies on benzene-scale molecules, including challenging double excitations. Beyond the examples presented in this work, we expect that this technique will be of interest for atomic, nuclear, and condensed matter physics.</description><subject>Accuracy</subject><subject>Adiabatic</subject><subject>Artificial neural networks</subject><subject>Atomic properties</subject><subject>Benchmarks</subject><subject>Benzene</subject><subject>Chemical bonds</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Condensed matter physics</subject><subject>Couplings</subject><subject>Deep learning</subject><subject>Estimates</subject><subject>Excitation</subject><subject>First principles</subject><subject>Fluorescent indicators</subject><subject>Ground state</subject><subject>Hamiltonian functions</subject><subject>Hydrocarbons</subject><subject>Light emitting diodes</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Molecular modelling</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Nuclear physics</subject><subject>Organic Chemistry</subject><subject>Oscillator strengths</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Potential energy</subject><subject>Prior Learning</subject><subject>Quantum chemistry</subject><subject>Quantum dots</subject><subject>Solar cells</subject><subject>Wave functions</subject><issn>0036-8075</issn><issn>1095-9203</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAUhS0EoqUws6FILCyhfiR2PFYVL6kSC8yR61yLlCRu_VDh3-OqgYHpDuc7R1cfQtcE3xNC-dzrFgYN96oZMGHiBE0JlmUuKWanaIox43mFRTlBF95vME6ZZOdowiQRtKJ0ipYLraNTATJt-20MKrR2yKzJdlENIfYZfOk2QJP5FIHP9m34yAZIlS6dsLfu01-iM6M6D1fjnaH3x4e35XO-en16WS5WuaZYhtyUygCRRivOKyBiXVAhqFQVcFaCNEVBlSkFZ40oaKW1pLRYE2OMVJxB07AZujvubp3dRfCh7luvoevUADb6mmHJqZCY4ITe_kM3NrohfXegSk6ILItEzY-UdtZ7B6beurZX7rsmuD74rUe_9eg3NW7G3bjuofnjf4WyHzyreMw</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>Pfau, David</creator><creator>Axelrod, Simon</creator><creator>Sutterud, Halvard</creator><creator>von Glehn, Ingrid</creator><creator>Spencer, James S</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0834-8653</orcidid><orcidid>https://orcid.org/0000-0003-1635-1668</orcidid><orcidid>https://orcid.org/0000-0003-2936-0133</orcidid><orcidid>https://orcid.org/0009-0008-3102-196X</orcidid></search><sort><creationdate>20240823</creationdate><title>Accurate computation of quantum excited states with neural networks</title><author>Pfau, David ; Axelrod, Simon ; Sutterud, Halvard ; von Glehn, Ingrid ; Spencer, James S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c209t-f5afe19fca668e17b427729a8e635e9f442af5763d7428cc9224b1fff9a63edd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adiabatic</topic><topic>Artificial neural networks</topic><topic>Atomic properties</topic><topic>Benchmarks</topic><topic>Benzene</topic><topic>Chemical bonds</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Condensed matter physics</topic><topic>Couplings</topic><topic>Deep learning</topic><topic>Estimates</topic><topic>Excitation</topic><topic>First principles</topic><topic>Fluorescent indicators</topic><topic>Ground state</topic><topic>Hamiltonian functions</topic><topic>Hydrocarbons</topic><topic>Light emitting diodes</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Molecular modelling</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Nuclear physics</topic><topic>Organic Chemistry</topic><topic>Oscillator strengths</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Potential energy</topic><topic>Prior Learning</topic><topic>Quantum chemistry</topic><topic>Quantum dots</topic><topic>Solar cells</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pfau, David</creatorcontrib><creatorcontrib>Axelrod, Simon</creatorcontrib><creatorcontrib>Sutterud, Halvard</creatorcontrib><creatorcontrib>von Glehn, Ingrid</creatorcontrib><creatorcontrib>Spencer, James S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pfau, David</au><au>Axelrod, Simon</au><au>Sutterud, Halvard</au><au>von Glehn, Ingrid</au><au>Spencer, James S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate computation of quantum excited states with neural networks</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2024-08-23</date><risdate>2024</risdate><volume>385</volume><issue>6711</issue><spage>eadn0137</spage><pages>eadn0137-</pages><issn>0036-8075</issn><issn>1095-9203</issn><eissn>1095-9203</eissn><abstract>We present an algorithm to estimate the excited states of a quantum system by variational Monte Carlo, which has no free parameters and requires no orthogonalization of the states, instead transforming the problem into that of finding the ground state of an expanded system. Arbitrary observables can be calculated, including off-diagonal expectations, such as the transition dipole moment. The method works particularly well with neural network ansätze, and by combining this method with the FermiNet and Psiformer ansätze, we can accurately recover excitation energies and oscillator strengths on a range of molecules. We achieve accurate vertical excitation energies on benzene-scale molecules, including challenging double excitations. Beyond the examples presented in this work, we expect that this technique will be of interest for atomic, nuclear, and condensed matter physics.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>39172822</pmid><doi>10.1126/science.adn0137</doi><orcidid>https://orcid.org/0000-0003-0834-8653</orcidid><orcidid>https://orcid.org/0000-0003-1635-1668</orcidid><orcidid>https://orcid.org/0000-0003-2936-0133</orcidid><orcidid>https://orcid.org/0009-0008-3102-196X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2024-08, Vol.385 (6711), p.eadn0137
issn 0036-8075
1095-9203
1095-9203
language eng
recordid cdi_proquest_miscellaneous_3096279010
source Science Magazine
subjects Accuracy
Adiabatic
Artificial neural networks
Atomic properties
Benchmarks
Benzene
Chemical bonds
Computation
Computer applications
Condensed matter physics
Couplings
Deep learning
Estimates
Excitation
First principles
Fluorescent indicators
Ground state
Hamiltonian functions
Hydrocarbons
Light emitting diodes
Machine learning
Mathematical analysis
Mathematical models
Mathematics
Molecular modelling
Networks
Neural networks
Nuclear physics
Organic Chemistry
Oscillator strengths
Photovoltaic cells
Physics
Potential energy
Prior Learning
Quantum chemistry
Quantum dots
Solar cells
Wave functions
title Accurate computation of quantum excited states with neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A54%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20computation%20of%20quantum%20excited%20states%20with%20neural%20networks&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Pfau,%20David&rft.date=2024-08-23&rft.volume=385&rft.issue=6711&rft.spage=eadn0137&rft.pages=eadn0137-&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.adn0137&rft_dat=%3Cproquest_cross%3E3095611954%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095611954&rft_id=info:pmid/39172822&rfr_iscdi=true