Accurate computation of quantum excited states with neural networks
We present an algorithm to estimate the excited states of a quantum system by variational Monte Carlo, which has no free parameters and requires no orthogonalization of the states, instead transforming the problem into that of finding the ground state of an expanded system. Arbitrary observables can...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2024-08, Vol.385 (6711), p.eadn0137 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6711 |
container_start_page | eadn0137 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 385 |
creator | Pfau, David Axelrod, Simon Sutterud, Halvard von Glehn, Ingrid Spencer, James S |
description | We present an algorithm to estimate the excited states of a quantum system by variational Monte Carlo, which has no free parameters and requires no orthogonalization of the states, instead transforming the problem into that of finding the ground state of an expanded system. Arbitrary observables can be calculated, including off-diagonal expectations, such as the transition dipole moment. The method works particularly well with neural network ansätze, and by combining this method with the FermiNet and Psiformer ansätze, we can accurately recover excitation energies and oscillator strengths on a range of molecules. We achieve accurate vertical excitation energies on benzene-scale molecules, including challenging double excitations. Beyond the examples presented in this work, we expect that this technique will be of interest for atomic, nuclear, and condensed matter physics. |
doi_str_mv | 10.1126/science.adn0137 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3096279010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095611954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c209t-f5afe19fca668e17b427729a8e635e9f442af5763d7428cc9224b1fff9a63edd3</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EoqUws6FILCyhfiR2PFYVL6kSC8yR61yLlCRu_VDh3-OqgYHpDuc7R1cfQtcE3xNC-dzrFgYN96oZMGHiBE0JlmUuKWanaIox43mFRTlBF95vME6ZZOdowiQRtKJ0ipYLraNTATJt-20MKrR2yKzJdlENIfYZfOk2QJP5FIHP9m34yAZIlS6dsLfu01-iM6M6D1fjnaH3x4e35XO-en16WS5WuaZYhtyUygCRRivOKyBiXVAhqFQVcFaCNEVBlSkFZ40oaKW1pLRYE2OMVJxB07AZujvubp3dRfCh7luvoevUADb6mmHJqZCY4ITe_kM3NrohfXegSk6ILItEzY-UdtZ7B6beurZX7rsmuD74rUe_9eg3NW7G3bjuofnjf4WyHzyreMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095611954</pqid></control><display><type>article</type><title>Accurate computation of quantum excited states with neural networks</title><source>Science Magazine</source><creator>Pfau, David ; Axelrod, Simon ; Sutterud, Halvard ; von Glehn, Ingrid ; Spencer, James S</creator><creatorcontrib>Pfau, David ; Axelrod, Simon ; Sutterud, Halvard ; von Glehn, Ingrid ; Spencer, James S</creatorcontrib><description>We present an algorithm to estimate the excited states of a quantum system by variational Monte Carlo, which has no free parameters and requires no orthogonalization of the states, instead transforming the problem into that of finding the ground state of an expanded system. Arbitrary observables can be calculated, including off-diagonal expectations, such as the transition dipole moment. The method works particularly well with neural network ansätze, and by combining this method with the FermiNet and Psiformer ansätze, we can accurately recover excitation energies and oscillator strengths on a range of molecules. We achieve accurate vertical excitation energies on benzene-scale molecules, including challenging double excitations. Beyond the examples presented in this work, we expect that this technique will be of interest for atomic, nuclear, and condensed matter physics.</description><identifier>ISSN: 0036-8075</identifier><identifier>ISSN: 1095-9203</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.adn0137</identifier><identifier>PMID: 39172822</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Accuracy ; Adiabatic ; Artificial neural networks ; Atomic properties ; Benchmarks ; Benzene ; Chemical bonds ; Computation ; Computer applications ; Condensed matter physics ; Couplings ; Deep learning ; Estimates ; Excitation ; First principles ; Fluorescent indicators ; Ground state ; Hamiltonian functions ; Hydrocarbons ; Light emitting diodes ; Machine learning ; Mathematical analysis ; Mathematical models ; Mathematics ; Molecular modelling ; Networks ; Neural networks ; Nuclear physics ; Organic Chemistry ; Oscillator strengths ; Photovoltaic cells ; Physics ; Potential energy ; Prior Learning ; Quantum chemistry ; Quantum dots ; Solar cells ; Wave functions</subject><ispartof>Science (American Association for the Advancement of Science), 2024-08, Vol.385 (6711), p.eadn0137</ispartof><rights>Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c209t-f5afe19fca668e17b427729a8e635e9f442af5763d7428cc9224b1fff9a63edd3</cites><orcidid>0000-0003-0834-8653 ; 0000-0003-1635-1668 ; 0000-0003-2936-0133 ; 0009-0008-3102-196X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39172822$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pfau, David</creatorcontrib><creatorcontrib>Axelrod, Simon</creatorcontrib><creatorcontrib>Sutterud, Halvard</creatorcontrib><creatorcontrib>von Glehn, Ingrid</creatorcontrib><creatorcontrib>Spencer, James S</creatorcontrib><title>Accurate computation of quantum excited states with neural networks</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>We present an algorithm to estimate the excited states of a quantum system by variational Monte Carlo, which has no free parameters and requires no orthogonalization of the states, instead transforming the problem into that of finding the ground state of an expanded system. Arbitrary observables can be calculated, including off-diagonal expectations, such as the transition dipole moment. The method works particularly well with neural network ansätze, and by combining this method with the FermiNet and Psiformer ansätze, we can accurately recover excitation energies and oscillator strengths on a range of molecules. We achieve accurate vertical excitation energies on benzene-scale molecules, including challenging double excitations. Beyond the examples presented in this work, we expect that this technique will be of interest for atomic, nuclear, and condensed matter physics.</description><subject>Accuracy</subject><subject>Adiabatic</subject><subject>Artificial neural networks</subject><subject>Atomic properties</subject><subject>Benchmarks</subject><subject>Benzene</subject><subject>Chemical bonds</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Condensed matter physics</subject><subject>Couplings</subject><subject>Deep learning</subject><subject>Estimates</subject><subject>Excitation</subject><subject>First principles</subject><subject>Fluorescent indicators</subject><subject>Ground state</subject><subject>Hamiltonian functions</subject><subject>Hydrocarbons</subject><subject>Light emitting diodes</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Molecular modelling</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Nuclear physics</subject><subject>Organic Chemistry</subject><subject>Oscillator strengths</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Potential energy</subject><subject>Prior Learning</subject><subject>Quantum chemistry</subject><subject>Quantum dots</subject><subject>Solar cells</subject><subject>Wave functions</subject><issn>0036-8075</issn><issn>1095-9203</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAUhS0EoqUws6FILCyhfiR2PFYVL6kSC8yR61yLlCRu_VDh3-OqgYHpDuc7R1cfQtcE3xNC-dzrFgYN96oZMGHiBE0JlmUuKWanaIox43mFRTlBF95vME6ZZOdowiQRtKJ0ipYLraNTATJt-20MKrR2yKzJdlENIfYZfOk2QJP5FIHP9m34yAZIlS6dsLfu01-iM6M6D1fjnaH3x4e35XO-en16WS5WuaZYhtyUygCRRivOKyBiXVAhqFQVcFaCNEVBlSkFZ40oaKW1pLRYE2OMVJxB07AZujvubp3dRfCh7luvoevUADb6mmHJqZCY4ITe_kM3NrohfXegSk6ILItEzY-UdtZ7B6beurZX7rsmuD74rUe_9eg3NW7G3bjuofnjf4WyHzyreMw</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>Pfau, David</creator><creator>Axelrod, Simon</creator><creator>Sutterud, Halvard</creator><creator>von Glehn, Ingrid</creator><creator>Spencer, James S</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0834-8653</orcidid><orcidid>https://orcid.org/0000-0003-1635-1668</orcidid><orcidid>https://orcid.org/0000-0003-2936-0133</orcidid><orcidid>https://orcid.org/0009-0008-3102-196X</orcidid></search><sort><creationdate>20240823</creationdate><title>Accurate computation of quantum excited states with neural networks</title><author>Pfau, David ; Axelrod, Simon ; Sutterud, Halvard ; von Glehn, Ingrid ; Spencer, James S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c209t-f5afe19fca668e17b427729a8e635e9f442af5763d7428cc9224b1fff9a63edd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adiabatic</topic><topic>Artificial neural networks</topic><topic>Atomic properties</topic><topic>Benchmarks</topic><topic>Benzene</topic><topic>Chemical bonds</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Condensed matter physics</topic><topic>Couplings</topic><topic>Deep learning</topic><topic>Estimates</topic><topic>Excitation</topic><topic>First principles</topic><topic>Fluorescent indicators</topic><topic>Ground state</topic><topic>Hamiltonian functions</topic><topic>Hydrocarbons</topic><topic>Light emitting diodes</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Molecular modelling</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Nuclear physics</topic><topic>Organic Chemistry</topic><topic>Oscillator strengths</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Potential energy</topic><topic>Prior Learning</topic><topic>Quantum chemistry</topic><topic>Quantum dots</topic><topic>Solar cells</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pfau, David</creatorcontrib><creatorcontrib>Axelrod, Simon</creatorcontrib><creatorcontrib>Sutterud, Halvard</creatorcontrib><creatorcontrib>von Glehn, Ingrid</creatorcontrib><creatorcontrib>Spencer, James S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pfau, David</au><au>Axelrod, Simon</au><au>Sutterud, Halvard</au><au>von Glehn, Ingrid</au><au>Spencer, James S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate computation of quantum excited states with neural networks</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2024-08-23</date><risdate>2024</risdate><volume>385</volume><issue>6711</issue><spage>eadn0137</spage><pages>eadn0137-</pages><issn>0036-8075</issn><issn>1095-9203</issn><eissn>1095-9203</eissn><abstract>We present an algorithm to estimate the excited states of a quantum system by variational Monte Carlo, which has no free parameters and requires no orthogonalization of the states, instead transforming the problem into that of finding the ground state of an expanded system. Arbitrary observables can be calculated, including off-diagonal expectations, such as the transition dipole moment. The method works particularly well with neural network ansätze, and by combining this method with the FermiNet and Psiformer ansätze, we can accurately recover excitation energies and oscillator strengths on a range of molecules. We achieve accurate vertical excitation energies on benzene-scale molecules, including challenging double excitations. Beyond the examples presented in this work, we expect that this technique will be of interest for atomic, nuclear, and condensed matter physics.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>39172822</pmid><doi>10.1126/science.adn0137</doi><orcidid>https://orcid.org/0000-0003-0834-8653</orcidid><orcidid>https://orcid.org/0000-0003-1635-1668</orcidid><orcidid>https://orcid.org/0000-0003-2936-0133</orcidid><orcidid>https://orcid.org/0009-0008-3102-196X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2024-08, Vol.385 (6711), p.eadn0137 |
issn | 0036-8075 1095-9203 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_3096279010 |
source | Science Magazine |
subjects | Accuracy Adiabatic Artificial neural networks Atomic properties Benchmarks Benzene Chemical bonds Computation Computer applications Condensed matter physics Couplings Deep learning Estimates Excitation First principles Fluorescent indicators Ground state Hamiltonian functions Hydrocarbons Light emitting diodes Machine learning Mathematical analysis Mathematical models Mathematics Molecular modelling Networks Neural networks Nuclear physics Organic Chemistry Oscillator strengths Photovoltaic cells Physics Potential energy Prior Learning Quantum chemistry Quantum dots Solar cells Wave functions |
title | Accurate computation of quantum excited states with neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A54%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20computation%20of%20quantum%20excited%20states%20with%20neural%20networks&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Pfau,%20David&rft.date=2024-08-23&rft.volume=385&rft.issue=6711&rft.spage=eadn0137&rft.pages=eadn0137-&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.adn0137&rft_dat=%3Cproquest_cross%3E3095611954%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095611954&rft_id=info:pmid/39172822&rfr_iscdi=true |