Superfast, large-scale harvesting of cellulose molecules via ethanol pre-swelling engineering of natural fibers
Cellulose molecules, as the basic unit of biomass cellulose, have demonstrated advancements in versatile engineering and modification of cellulose toward sustainable and promising materials in our low-carbon society. However, harvesting high-quality cellulose molecules from natural cellulosic fibers...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2024-11, Vol.343, p.122484, Article 122484 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 122484 |
container_title | Carbohydrate polymers |
container_volume | 343 |
creator | Jiang, Jiajun Zhang, Qianhong Luo, Xiyao Cheng, Binbin Chen, Qunfeng Yang, Jiawei Huang, Liulian Mondal, Ajoy Kanti Yuan, Zhanhui Chen, Lihui Li, Jianguo |
description | Cellulose molecules, as the basic unit of biomass cellulose, have demonstrated advancements in versatile engineering and modification of cellulose toward sustainable and promising materials in our low-carbon society. However, harvesting high-quality cellulose molecules from natural cellulosic fibers (CF) remains challenging due to strong hydrogen bonds and unique crystalline structure, which limit solvents (such as ionic liquid, IL) transport and diffusion within CF, making the process energy/time-intensively. Herein, we superfast and sustainably engineer biomass fibers into high-performance cellulose molecules via ethanol pre-swelling of CF followed by IL treatment in the microwave (MW) system. Ethanol-pre-swelled cellulosic fibers (SCF) feature modified morphological and structural distinctions, with improved fiber width, pore size, and specific surface area. The ethanol in the SCF structure is appropriately removed through MW heating and cooling, leaving transport and diffusion pathways of IL within the SCF. Such strategy enables the superfast (140 s) and large-scale (kilogram level) harvesting of cellulose molecules with high molecular weight, resulting in high-performance, versatile cellulose ionogel with a 300 % increase in strength and 1027 % in toughness, monitoring human movement, external pressure, and temperature. Our strategy paves the way for time/energy-effectively, sustainably harvesting high-quality polymer molecules from natural sources beyond cellulose toward versatile and advanced materials. |
doi_str_mv | 10.1016/j.carbpol.2024.122484 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3096278956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861724007100</els_id><sourcerecordid>3153675259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-99e0f63d029c523470f0f3fe07837b92fd8a64ffe3b5c096c16e95e7837e6f1e3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1ERbeFnwDykQPZ-it2fEKoAopUiQPlbDnOeOuVNw52shX_vo524dq5-DDPO6Pxg9B7SraUUHmz3zqb-ynFLSNMbCljohOv0IZ2SjeUC_EabQgVoukkVZfoqpQ9qSUpeYMuuaZKUMI3KP1aJsjelvkTjjbvoCnORsCPNh-hzGHc4eSxgxiXmArgQ4rglggFH4PFMD_aMUU85Zp7qtDKw7gLI0A-Z0c7L9lG7EMPubxFF97GAu_O7zX6_e3rw-1dc__z-4_bL_eNY0rOjdZAvOQDYdq1jAtFPPHcA1EdV71mfuisFN4D71tHtHRUgm5h7YL0FPg1-niaO-X0Z6mXmEMo6xl2hLQUw2nLpWpZq19G63ymOt3KirYn1OVUSgZvphwONv81lJhVi9mbsxazajEnLTX34bxi6Q8w_E_981CBzycA6p8cA2RTXIDRwRAyuNkMKbyw4hkWqKIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096278956</pqid></control><display><type>article</type><title>Superfast, large-scale harvesting of cellulose molecules via ethanol pre-swelling engineering of natural fibers</title><source>Elsevier ScienceDirect Journals</source><creator>Jiang, Jiajun ; Zhang, Qianhong ; Luo, Xiyao ; Cheng, Binbin ; Chen, Qunfeng ; Yang, Jiawei ; Huang, Liulian ; Mondal, Ajoy Kanti ; Yuan, Zhanhui ; Chen, Lihui ; Li, Jianguo</creator><creatorcontrib>Jiang, Jiajun ; Zhang, Qianhong ; Luo, Xiyao ; Cheng, Binbin ; Chen, Qunfeng ; Yang, Jiawei ; Huang, Liulian ; Mondal, Ajoy Kanti ; Yuan, Zhanhui ; Chen, Lihui ; Li, Jianguo</creatorcontrib><description>Cellulose molecules, as the basic unit of biomass cellulose, have demonstrated advancements in versatile engineering and modification of cellulose toward sustainable and promising materials in our low-carbon society. However, harvesting high-quality cellulose molecules from natural cellulosic fibers (CF) remains challenging due to strong hydrogen bonds and unique crystalline structure, which limit solvents (such as ionic liquid, IL) transport and diffusion within CF, making the process energy/time-intensively. Herein, we superfast and sustainably engineer biomass fibers into high-performance cellulose molecules via ethanol pre-swelling of CF followed by IL treatment in the microwave (MW) system. Ethanol-pre-swelled cellulosic fibers (SCF) feature modified morphological and structural distinctions, with improved fiber width, pore size, and specific surface area. The ethanol in the SCF structure is appropriately removed through MW heating and cooling, leaving transport and diffusion pathways of IL within the SCF. Such strategy enables the superfast (140 s) and large-scale (kilogram level) harvesting of cellulose molecules with high molecular weight, resulting in high-performance, versatile cellulose ionogel with a 300 % increase in strength and 1027 % in toughness, monitoring human movement, external pressure, and temperature. Our strategy paves the way for time/energy-effectively, sustainably harvesting high-quality polymer molecules from natural sources beyond cellulose toward versatile and advanced materials.</description><identifier>ISSN: 0144-8617</identifier><identifier>ISSN: 1879-1344</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2024.122484</identifier><identifier>PMID: 39174103</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biomass ; cellulose ; Cellulose molecule ; cooling ; crystal structure ; ethanol ; heat ; humans ; hydrogen ; ionic liquids ; Large scale ; molecular weight ; polymers ; porosity ; Pre-swelling ; Superfast ; surface area ; temperature</subject><ispartof>Carbohydrate polymers, 2024-11, Vol.343, p.122484, Article 122484</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c276t-99e0f63d029c523470f0f3fe07837b92fd8a64ffe3b5c096c16e95e7837e6f1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0144861724007100$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39174103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Jiajun</creatorcontrib><creatorcontrib>Zhang, Qianhong</creatorcontrib><creatorcontrib>Luo, Xiyao</creatorcontrib><creatorcontrib>Cheng, Binbin</creatorcontrib><creatorcontrib>Chen, Qunfeng</creatorcontrib><creatorcontrib>Yang, Jiawei</creatorcontrib><creatorcontrib>Huang, Liulian</creatorcontrib><creatorcontrib>Mondal, Ajoy Kanti</creatorcontrib><creatorcontrib>Yuan, Zhanhui</creatorcontrib><creatorcontrib>Chen, Lihui</creatorcontrib><creatorcontrib>Li, Jianguo</creatorcontrib><title>Superfast, large-scale harvesting of cellulose molecules via ethanol pre-swelling engineering of natural fibers</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>Cellulose molecules, as the basic unit of biomass cellulose, have demonstrated advancements in versatile engineering and modification of cellulose toward sustainable and promising materials in our low-carbon society. However, harvesting high-quality cellulose molecules from natural cellulosic fibers (CF) remains challenging due to strong hydrogen bonds and unique crystalline structure, which limit solvents (such as ionic liquid, IL) transport and diffusion within CF, making the process energy/time-intensively. Herein, we superfast and sustainably engineer biomass fibers into high-performance cellulose molecules via ethanol pre-swelling of CF followed by IL treatment in the microwave (MW) system. Ethanol-pre-swelled cellulosic fibers (SCF) feature modified morphological and structural distinctions, with improved fiber width, pore size, and specific surface area. The ethanol in the SCF structure is appropriately removed through MW heating and cooling, leaving transport and diffusion pathways of IL within the SCF. Such strategy enables the superfast (140 s) and large-scale (kilogram level) harvesting of cellulose molecules with high molecular weight, resulting in high-performance, versatile cellulose ionogel with a 300 % increase in strength and 1027 % in toughness, monitoring human movement, external pressure, and temperature. Our strategy paves the way for time/energy-effectively, sustainably harvesting high-quality polymer molecules from natural sources beyond cellulose toward versatile and advanced materials.</description><subject>Biomass</subject><subject>cellulose</subject><subject>Cellulose molecule</subject><subject>cooling</subject><subject>crystal structure</subject><subject>ethanol</subject><subject>heat</subject><subject>humans</subject><subject>hydrogen</subject><subject>ionic liquids</subject><subject>Large scale</subject><subject>molecular weight</subject><subject>polymers</subject><subject>porosity</subject><subject>Pre-swelling</subject><subject>Superfast</subject><subject>surface area</subject><subject>temperature</subject><issn>0144-8617</issn><issn>1879-1344</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi1ERbeFnwDykQPZ-it2fEKoAopUiQPlbDnOeOuVNw52shX_vo524dq5-DDPO6Pxg9B7SraUUHmz3zqb-ynFLSNMbCljohOv0IZ2SjeUC_EabQgVoukkVZfoqpQ9qSUpeYMuuaZKUMI3KP1aJsjelvkTjjbvoCnORsCPNh-hzGHc4eSxgxiXmArgQ4rglggFH4PFMD_aMUU85Zp7qtDKw7gLI0A-Z0c7L9lG7EMPubxFF97GAu_O7zX6_e3rw-1dc__z-4_bL_eNY0rOjdZAvOQDYdq1jAtFPPHcA1EdV71mfuisFN4D71tHtHRUgm5h7YL0FPg1-niaO-X0Z6mXmEMo6xl2hLQUw2nLpWpZq19G63ymOt3KirYn1OVUSgZvphwONv81lJhVi9mbsxazajEnLTX34bxi6Q8w_E_981CBzycA6p8cA2RTXIDRwRAyuNkMKbyw4hkWqKIY</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Jiang, Jiajun</creator><creator>Zhang, Qianhong</creator><creator>Luo, Xiyao</creator><creator>Cheng, Binbin</creator><creator>Chen, Qunfeng</creator><creator>Yang, Jiawei</creator><creator>Huang, Liulian</creator><creator>Mondal, Ajoy Kanti</creator><creator>Yuan, Zhanhui</creator><creator>Chen, Lihui</creator><creator>Li, Jianguo</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241101</creationdate><title>Superfast, large-scale harvesting of cellulose molecules via ethanol pre-swelling engineering of natural fibers</title><author>Jiang, Jiajun ; Zhang, Qianhong ; Luo, Xiyao ; Cheng, Binbin ; Chen, Qunfeng ; Yang, Jiawei ; Huang, Liulian ; Mondal, Ajoy Kanti ; Yuan, Zhanhui ; Chen, Lihui ; Li, Jianguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-99e0f63d029c523470f0f3fe07837b92fd8a64ffe3b5c096c16e95e7837e6f1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomass</topic><topic>cellulose</topic><topic>Cellulose molecule</topic><topic>cooling</topic><topic>crystal structure</topic><topic>ethanol</topic><topic>heat</topic><topic>humans</topic><topic>hydrogen</topic><topic>ionic liquids</topic><topic>Large scale</topic><topic>molecular weight</topic><topic>polymers</topic><topic>porosity</topic><topic>Pre-swelling</topic><topic>Superfast</topic><topic>surface area</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Jiajun</creatorcontrib><creatorcontrib>Zhang, Qianhong</creatorcontrib><creatorcontrib>Luo, Xiyao</creatorcontrib><creatorcontrib>Cheng, Binbin</creatorcontrib><creatorcontrib>Chen, Qunfeng</creatorcontrib><creatorcontrib>Yang, Jiawei</creatorcontrib><creatorcontrib>Huang, Liulian</creatorcontrib><creatorcontrib>Mondal, Ajoy Kanti</creatorcontrib><creatorcontrib>Yuan, Zhanhui</creatorcontrib><creatorcontrib>Chen, Lihui</creatorcontrib><creatorcontrib>Li, Jianguo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Jiajun</au><au>Zhang, Qianhong</au><au>Luo, Xiyao</au><au>Cheng, Binbin</au><au>Chen, Qunfeng</au><au>Yang, Jiawei</au><au>Huang, Liulian</au><au>Mondal, Ajoy Kanti</au><au>Yuan, Zhanhui</au><au>Chen, Lihui</au><au>Li, Jianguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superfast, large-scale harvesting of cellulose molecules via ethanol pre-swelling engineering of natural fibers</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>343</volume><spage>122484</spage><pages>122484-</pages><artnum>122484</artnum><issn>0144-8617</issn><issn>1879-1344</issn><eissn>1879-1344</eissn><abstract>Cellulose molecules, as the basic unit of biomass cellulose, have demonstrated advancements in versatile engineering and modification of cellulose toward sustainable and promising materials in our low-carbon society. However, harvesting high-quality cellulose molecules from natural cellulosic fibers (CF) remains challenging due to strong hydrogen bonds and unique crystalline structure, which limit solvents (such as ionic liquid, IL) transport and diffusion within CF, making the process energy/time-intensively. Herein, we superfast and sustainably engineer biomass fibers into high-performance cellulose molecules via ethanol pre-swelling of CF followed by IL treatment in the microwave (MW) system. Ethanol-pre-swelled cellulosic fibers (SCF) feature modified morphological and structural distinctions, with improved fiber width, pore size, and specific surface area. The ethanol in the SCF structure is appropriately removed through MW heating and cooling, leaving transport and diffusion pathways of IL within the SCF. Such strategy enables the superfast (140 s) and large-scale (kilogram level) harvesting of cellulose molecules with high molecular weight, resulting in high-performance, versatile cellulose ionogel with a 300 % increase in strength and 1027 % in toughness, monitoring human movement, external pressure, and temperature. Our strategy paves the way for time/energy-effectively, sustainably harvesting high-quality polymer molecules from natural sources beyond cellulose toward versatile and advanced materials.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39174103</pmid><doi>10.1016/j.carbpol.2024.122484</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0144-8617 |
ispartof | Carbohydrate polymers, 2024-11, Vol.343, p.122484, Article 122484 |
issn | 0144-8617 1879-1344 1879-1344 |
language | eng |
recordid | cdi_proquest_miscellaneous_3096278956 |
source | Elsevier ScienceDirect Journals |
subjects | Biomass cellulose Cellulose molecule cooling crystal structure ethanol heat humans hydrogen ionic liquids Large scale molecular weight polymers porosity Pre-swelling Superfast surface area temperature |
title | Superfast, large-scale harvesting of cellulose molecules via ethanol pre-swelling engineering of natural fibers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superfast,%20large-scale%20harvesting%20of%20cellulose%20molecules%20via%20ethanol%20pre-swelling%20engineering%20of%20natural%20fibers&rft.jtitle=Carbohydrate%20polymers&rft.au=Jiang,%20Jiajun&rft.date=2024-11-01&rft.volume=343&rft.spage=122484&rft.pages=122484-&rft.artnum=122484&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2024.122484&rft_dat=%3Cproquest_cross%3E3153675259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096278956&rft_id=info:pmid/39174103&rft_els_id=S0144861724007100&rfr_iscdi=true |