Superfast, large-scale harvesting of cellulose molecules via ethanol pre-swelling engineering of natural fibers

Cellulose molecules, as the basic unit of biomass cellulose, have demonstrated advancements in versatile engineering and modification of cellulose toward sustainable and promising materials in our low-carbon society. However, harvesting high-quality cellulose molecules from natural cellulosic fibers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2024-11, Vol.343, p.122484, Article 122484
Hauptverfasser: Jiang, Jiajun, Zhang, Qianhong, Luo, Xiyao, Cheng, Binbin, Chen, Qunfeng, Yang, Jiawei, Huang, Liulian, Mondal, Ajoy Kanti, Yuan, Zhanhui, Chen, Lihui, Li, Jianguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 122484
container_title Carbohydrate polymers
container_volume 343
creator Jiang, Jiajun
Zhang, Qianhong
Luo, Xiyao
Cheng, Binbin
Chen, Qunfeng
Yang, Jiawei
Huang, Liulian
Mondal, Ajoy Kanti
Yuan, Zhanhui
Chen, Lihui
Li, Jianguo
description Cellulose molecules, as the basic unit of biomass cellulose, have demonstrated advancements in versatile engineering and modification of cellulose toward sustainable and promising materials in our low-carbon society. However, harvesting high-quality cellulose molecules from natural cellulosic fibers (CF) remains challenging due to strong hydrogen bonds and unique crystalline structure, which limit solvents (such as ionic liquid, IL) transport and diffusion within CF, making the process energy/time-intensively. Herein, we superfast and sustainably engineer biomass fibers into high-performance cellulose molecules via ethanol pre-swelling of CF followed by IL treatment in the microwave (MW) system. Ethanol-pre-swelled cellulosic fibers (SCF) feature modified morphological and structural distinctions, with improved fiber width, pore size, and specific surface area. The ethanol in the SCF structure is appropriately removed through MW heating and cooling, leaving transport and diffusion pathways of IL within the SCF. Such strategy enables the superfast (140 s) and large-scale (kilogram level) harvesting of cellulose molecules with high molecular weight, resulting in high-performance, versatile cellulose ionogel with a 300 % increase in strength and 1027 % in toughness, monitoring human movement, external pressure, and temperature. Our strategy paves the way for time/energy-effectively, sustainably harvesting high-quality polymer molecules from natural sources beyond cellulose toward versatile and advanced materials.
doi_str_mv 10.1016/j.carbpol.2024.122484
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3096278956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861724007100</els_id><sourcerecordid>3153675259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-99e0f63d029c523470f0f3fe07837b92fd8a64ffe3b5c096c16e95e7837e6f1e3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1ERbeFnwDykQPZ-it2fEKoAopUiQPlbDnOeOuVNw52shX_vo524dq5-DDPO6Pxg9B7SraUUHmz3zqb-ynFLSNMbCljohOv0IZ2SjeUC_EabQgVoukkVZfoqpQ9qSUpeYMuuaZKUMI3KP1aJsjelvkTjjbvoCnORsCPNh-hzGHc4eSxgxiXmArgQ4rglggFH4PFMD_aMUU85Zp7qtDKw7gLI0A-Z0c7L9lG7EMPubxFF97GAu_O7zX6_e3rw-1dc__z-4_bL_eNY0rOjdZAvOQDYdq1jAtFPPHcA1EdV71mfuisFN4D71tHtHRUgm5h7YL0FPg1-niaO-X0Z6mXmEMo6xl2hLQUw2nLpWpZq19G63ymOt3KirYn1OVUSgZvphwONv81lJhVi9mbsxazajEnLTX34bxi6Q8w_E_981CBzycA6p8cA2RTXIDRwRAyuNkMKbyw4hkWqKIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096278956</pqid></control><display><type>article</type><title>Superfast, large-scale harvesting of cellulose molecules via ethanol pre-swelling engineering of natural fibers</title><source>Elsevier ScienceDirect Journals</source><creator>Jiang, Jiajun ; Zhang, Qianhong ; Luo, Xiyao ; Cheng, Binbin ; Chen, Qunfeng ; Yang, Jiawei ; Huang, Liulian ; Mondal, Ajoy Kanti ; Yuan, Zhanhui ; Chen, Lihui ; Li, Jianguo</creator><creatorcontrib>Jiang, Jiajun ; Zhang, Qianhong ; Luo, Xiyao ; Cheng, Binbin ; Chen, Qunfeng ; Yang, Jiawei ; Huang, Liulian ; Mondal, Ajoy Kanti ; Yuan, Zhanhui ; Chen, Lihui ; Li, Jianguo</creatorcontrib><description>Cellulose molecules, as the basic unit of biomass cellulose, have demonstrated advancements in versatile engineering and modification of cellulose toward sustainable and promising materials in our low-carbon society. However, harvesting high-quality cellulose molecules from natural cellulosic fibers (CF) remains challenging due to strong hydrogen bonds and unique crystalline structure, which limit solvents (such as ionic liquid, IL) transport and diffusion within CF, making the process energy/time-intensively. Herein, we superfast and sustainably engineer biomass fibers into high-performance cellulose molecules via ethanol pre-swelling of CF followed by IL treatment in the microwave (MW) system. Ethanol-pre-swelled cellulosic fibers (SCF) feature modified morphological and structural distinctions, with improved fiber width, pore size, and specific surface area. The ethanol in the SCF structure is appropriately removed through MW heating and cooling, leaving transport and diffusion pathways of IL within the SCF. Such strategy enables the superfast (140 s) and large-scale (kilogram level) harvesting of cellulose molecules with high molecular weight, resulting in high-performance, versatile cellulose ionogel with a 300 % increase in strength and 1027 % in toughness, monitoring human movement, external pressure, and temperature. Our strategy paves the way for time/energy-effectively, sustainably harvesting high-quality polymer molecules from natural sources beyond cellulose toward versatile and advanced materials.</description><identifier>ISSN: 0144-8617</identifier><identifier>ISSN: 1879-1344</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2024.122484</identifier><identifier>PMID: 39174103</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biomass ; cellulose ; Cellulose molecule ; cooling ; crystal structure ; ethanol ; heat ; humans ; hydrogen ; ionic liquids ; Large scale ; molecular weight ; polymers ; porosity ; Pre-swelling ; Superfast ; surface area ; temperature</subject><ispartof>Carbohydrate polymers, 2024-11, Vol.343, p.122484, Article 122484</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c276t-99e0f63d029c523470f0f3fe07837b92fd8a64ffe3b5c096c16e95e7837e6f1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0144861724007100$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39174103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Jiajun</creatorcontrib><creatorcontrib>Zhang, Qianhong</creatorcontrib><creatorcontrib>Luo, Xiyao</creatorcontrib><creatorcontrib>Cheng, Binbin</creatorcontrib><creatorcontrib>Chen, Qunfeng</creatorcontrib><creatorcontrib>Yang, Jiawei</creatorcontrib><creatorcontrib>Huang, Liulian</creatorcontrib><creatorcontrib>Mondal, Ajoy Kanti</creatorcontrib><creatorcontrib>Yuan, Zhanhui</creatorcontrib><creatorcontrib>Chen, Lihui</creatorcontrib><creatorcontrib>Li, Jianguo</creatorcontrib><title>Superfast, large-scale harvesting of cellulose molecules via ethanol pre-swelling engineering of natural fibers</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>Cellulose molecules, as the basic unit of biomass cellulose, have demonstrated advancements in versatile engineering and modification of cellulose toward sustainable and promising materials in our low-carbon society. However, harvesting high-quality cellulose molecules from natural cellulosic fibers (CF) remains challenging due to strong hydrogen bonds and unique crystalline structure, which limit solvents (such as ionic liquid, IL) transport and diffusion within CF, making the process energy/time-intensively. Herein, we superfast and sustainably engineer biomass fibers into high-performance cellulose molecules via ethanol pre-swelling of CF followed by IL treatment in the microwave (MW) system. Ethanol-pre-swelled cellulosic fibers (SCF) feature modified morphological and structural distinctions, with improved fiber width, pore size, and specific surface area. The ethanol in the SCF structure is appropriately removed through MW heating and cooling, leaving transport and diffusion pathways of IL within the SCF. Such strategy enables the superfast (140 s) and large-scale (kilogram level) harvesting of cellulose molecules with high molecular weight, resulting in high-performance, versatile cellulose ionogel with a 300 % increase in strength and 1027 % in toughness, monitoring human movement, external pressure, and temperature. Our strategy paves the way for time/energy-effectively, sustainably harvesting high-quality polymer molecules from natural sources beyond cellulose toward versatile and advanced materials.</description><subject>Biomass</subject><subject>cellulose</subject><subject>Cellulose molecule</subject><subject>cooling</subject><subject>crystal structure</subject><subject>ethanol</subject><subject>heat</subject><subject>humans</subject><subject>hydrogen</subject><subject>ionic liquids</subject><subject>Large scale</subject><subject>molecular weight</subject><subject>polymers</subject><subject>porosity</subject><subject>Pre-swelling</subject><subject>Superfast</subject><subject>surface area</subject><subject>temperature</subject><issn>0144-8617</issn><issn>1879-1344</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi1ERbeFnwDykQPZ-it2fEKoAopUiQPlbDnOeOuVNw52shX_vo524dq5-DDPO6Pxg9B7SraUUHmz3zqb-ynFLSNMbCljohOv0IZ2SjeUC_EabQgVoukkVZfoqpQ9qSUpeYMuuaZKUMI3KP1aJsjelvkTjjbvoCnORsCPNh-hzGHc4eSxgxiXmArgQ4rglggFH4PFMD_aMUU85Zp7qtDKw7gLI0A-Z0c7L9lG7EMPubxFF97GAu_O7zX6_e3rw-1dc__z-4_bL_eNY0rOjdZAvOQDYdq1jAtFPPHcA1EdV71mfuisFN4D71tHtHRUgm5h7YL0FPg1-niaO-X0Z6mXmEMo6xl2hLQUw2nLpWpZq19G63ymOt3KirYn1OVUSgZvphwONv81lJhVi9mbsxazajEnLTX34bxi6Q8w_E_981CBzycA6p8cA2RTXIDRwRAyuNkMKbyw4hkWqKIY</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Jiang, Jiajun</creator><creator>Zhang, Qianhong</creator><creator>Luo, Xiyao</creator><creator>Cheng, Binbin</creator><creator>Chen, Qunfeng</creator><creator>Yang, Jiawei</creator><creator>Huang, Liulian</creator><creator>Mondal, Ajoy Kanti</creator><creator>Yuan, Zhanhui</creator><creator>Chen, Lihui</creator><creator>Li, Jianguo</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241101</creationdate><title>Superfast, large-scale harvesting of cellulose molecules via ethanol pre-swelling engineering of natural fibers</title><author>Jiang, Jiajun ; Zhang, Qianhong ; Luo, Xiyao ; Cheng, Binbin ; Chen, Qunfeng ; Yang, Jiawei ; Huang, Liulian ; Mondal, Ajoy Kanti ; Yuan, Zhanhui ; Chen, Lihui ; Li, Jianguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-99e0f63d029c523470f0f3fe07837b92fd8a64ffe3b5c096c16e95e7837e6f1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomass</topic><topic>cellulose</topic><topic>Cellulose molecule</topic><topic>cooling</topic><topic>crystal structure</topic><topic>ethanol</topic><topic>heat</topic><topic>humans</topic><topic>hydrogen</topic><topic>ionic liquids</topic><topic>Large scale</topic><topic>molecular weight</topic><topic>polymers</topic><topic>porosity</topic><topic>Pre-swelling</topic><topic>Superfast</topic><topic>surface area</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Jiajun</creatorcontrib><creatorcontrib>Zhang, Qianhong</creatorcontrib><creatorcontrib>Luo, Xiyao</creatorcontrib><creatorcontrib>Cheng, Binbin</creatorcontrib><creatorcontrib>Chen, Qunfeng</creatorcontrib><creatorcontrib>Yang, Jiawei</creatorcontrib><creatorcontrib>Huang, Liulian</creatorcontrib><creatorcontrib>Mondal, Ajoy Kanti</creatorcontrib><creatorcontrib>Yuan, Zhanhui</creatorcontrib><creatorcontrib>Chen, Lihui</creatorcontrib><creatorcontrib>Li, Jianguo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Jiajun</au><au>Zhang, Qianhong</au><au>Luo, Xiyao</au><au>Cheng, Binbin</au><au>Chen, Qunfeng</au><au>Yang, Jiawei</au><au>Huang, Liulian</au><au>Mondal, Ajoy Kanti</au><au>Yuan, Zhanhui</au><au>Chen, Lihui</au><au>Li, Jianguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superfast, large-scale harvesting of cellulose molecules via ethanol pre-swelling engineering of natural fibers</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>343</volume><spage>122484</spage><pages>122484-</pages><artnum>122484</artnum><issn>0144-8617</issn><issn>1879-1344</issn><eissn>1879-1344</eissn><abstract>Cellulose molecules, as the basic unit of biomass cellulose, have demonstrated advancements in versatile engineering and modification of cellulose toward sustainable and promising materials in our low-carbon society. However, harvesting high-quality cellulose molecules from natural cellulosic fibers (CF) remains challenging due to strong hydrogen bonds and unique crystalline structure, which limit solvents (such as ionic liquid, IL) transport and diffusion within CF, making the process energy/time-intensively. Herein, we superfast and sustainably engineer biomass fibers into high-performance cellulose molecules via ethanol pre-swelling of CF followed by IL treatment in the microwave (MW) system. Ethanol-pre-swelled cellulosic fibers (SCF) feature modified morphological and structural distinctions, with improved fiber width, pore size, and specific surface area. The ethanol in the SCF structure is appropriately removed through MW heating and cooling, leaving transport and diffusion pathways of IL within the SCF. Such strategy enables the superfast (140 s) and large-scale (kilogram level) harvesting of cellulose molecules with high molecular weight, resulting in high-performance, versatile cellulose ionogel with a 300 % increase in strength and 1027 % in toughness, monitoring human movement, external pressure, and temperature. Our strategy paves the way for time/energy-effectively, sustainably harvesting high-quality polymer molecules from natural sources beyond cellulose toward versatile and advanced materials.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39174103</pmid><doi>10.1016/j.carbpol.2024.122484</doi></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2024-11, Vol.343, p.122484, Article 122484
issn 0144-8617
1879-1344
1879-1344
language eng
recordid cdi_proquest_miscellaneous_3096278956
source Elsevier ScienceDirect Journals
subjects Biomass
cellulose
Cellulose molecule
cooling
crystal structure
ethanol
heat
humans
hydrogen
ionic liquids
Large scale
molecular weight
polymers
porosity
Pre-swelling
Superfast
surface area
temperature
title Superfast, large-scale harvesting of cellulose molecules via ethanol pre-swelling engineering of natural fibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superfast,%20large-scale%20harvesting%20of%20cellulose%20molecules%20via%20ethanol%20pre-swelling%20engineering%20of%20natural%20fibers&rft.jtitle=Carbohydrate%20polymers&rft.au=Jiang,%20Jiajun&rft.date=2024-11-01&rft.volume=343&rft.spage=122484&rft.pages=122484-&rft.artnum=122484&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2024.122484&rft_dat=%3Cproquest_cross%3E3153675259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096278956&rft_id=info:pmid/39174103&rft_els_id=S0144861724007100&rfr_iscdi=true