Reducing the uncertainty in estimating soil microbial-derived carbon storage
Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and plays a crucial role in mitigating climate change and enhancing soil productivity. Microbial-derived carbon (MDC) is the main component of the persistent SOC pool. However, current formulas used to estimate the propor...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2024-08, Vol.121 (35), p.e2401916121 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 35 |
container_start_page | e2401916121 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 121 |
creator | Hu, Han Qian, Chao Xue, Ke Jörgensen, Rainer Georg Keiluweit, Marco Liang, Chao Zhu, Xuefeng Chen, Ji Sun, Yishen Ni, Haowei Ding, Jixian Huang, Weigen Mao, Jingdong Tan, Rong-Xi Zhou, Jizhong Crowther, Thomas W Zhou, Zhi-Hua Zhang, Jiabao Liang, Yuting |
description | Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and plays a crucial role in mitigating climate change and enhancing soil productivity. Microbial-derived carbon (MDC) is the main component of the persistent SOC pool. However, current formulas used to estimate the proportional contribution of MDC are plagued by uncertainties due to limited sample sizes and the neglect of bacterial group composition effects. Here, we compiled the comprehensive global dataset and employed machine learning approaches to refine our quantitative understanding of MDC contributions to total carbon storage. Our efforts resulted in a reduction in the relative standard errors in prevailing estimations by an average of 71% and minimized the effect of global variations in bacterial group compositions on estimating MDC. Our estimation indicates that MDC contributes approximately 758 Pg, representing approximately 40% of the global soil carbon stock. Our study updated the formulas of MDC estimation with improving the accuracy and preserving simplicity and practicality. Given the unique biochemistry and functioning of the MDC pool, our study has direct implications for modeling efforts and predicting the land-atmosphere carbon balance under current and future climate scenarios. |
doi_str_mv | 10.1073/pnas.2401916121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3096278733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3096278733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c209t-beef22428888216d57ed1a0b5011afca87a5ef26b51d9781ccd94e02e3afce9b3</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxRdRbK2evUnAi5e0M7tJNnuU4hcUBNFz2GwmdUs-6m4i9L93S_0A5zKH-c3jvcfYJcIcQYrFttN-zhNAhRlyPGJTBIVxlig4ZlMALuM84cmEnXm_AQCV5nDKJkKh5DLPp2z1QtVobLeOhneKxs6QG7Tthl1ku4j8YFs97K--t03UWuP60uomrsjZT6oio13Zd5EfeqfXdM5Oat14uvjeM_Z2f_e6fIxXzw9Py9tVbDioIS6Jas4TnofhmFWppAo1lCkg6troXOo0EFmZYqVkjsZUKiHgJMKVVClm7Oagu3X9xxhcFq31hppGd9SPvhCgshBPChHQ63_oph9dF9wVAiHjCapEBmpxoEI-7x3VxdaF5G5XIBT7oot90cVf0eHj6lt3LFuqfvmfZsUXLfN58g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106241947</pqid></control><display><type>article</type><title>Reducing the uncertainty in estimating soil microbial-derived carbon storage</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Hu, Han ; Qian, Chao ; Xue, Ke ; Jörgensen, Rainer Georg ; Keiluweit, Marco ; Liang, Chao ; Zhu, Xuefeng ; Chen, Ji ; Sun, Yishen ; Ni, Haowei ; Ding, Jixian ; Huang, Weigen ; Mao, Jingdong ; Tan, Rong-Xi ; Zhou, Jizhong ; Crowther, Thomas W ; Zhou, Zhi-Hua ; Zhang, Jiabao ; Liang, Yuting</creator><creatorcontrib>Hu, Han ; Qian, Chao ; Xue, Ke ; Jörgensen, Rainer Georg ; Keiluweit, Marco ; Liang, Chao ; Zhu, Xuefeng ; Chen, Ji ; Sun, Yishen ; Ni, Haowei ; Ding, Jixian ; Huang, Weigen ; Mao, Jingdong ; Tan, Rong-Xi ; Zhou, Jizhong ; Crowther, Thomas W ; Zhou, Zhi-Hua ; Zhang, Jiabao ; Liang, Yuting</creatorcontrib><description>Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and plays a crucial role in mitigating climate change and enhancing soil productivity. Microbial-derived carbon (MDC) is the main component of the persistent SOC pool. However, current formulas used to estimate the proportional contribution of MDC are plagued by uncertainties due to limited sample sizes and the neglect of bacterial group composition effects. Here, we compiled the comprehensive global dataset and employed machine learning approaches to refine our quantitative understanding of MDC contributions to total carbon storage. Our efforts resulted in a reduction in the relative standard errors in prevailing estimations by an average of 71% and minimized the effect of global variations in bacterial group compositions on estimating MDC. Our estimation indicates that MDC contributes approximately 758 Pg, representing approximately 40% of the global soil carbon stock. Our study updated the formulas of MDC estimation with improving the accuracy and preserving simplicity and practicality. Given the unique biochemistry and functioning of the MDC pool, our study has direct implications for modeling efforts and predicting the land-atmosphere carbon balance under current and future climate scenarios.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2401916121</identifier><identifier>PMID: 39172788</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacteria - metabolism ; Carbon - analysis ; Carbon - metabolism ; Carbon Cycle ; Carbon Sequestration ; Climate Change ; Climate change mitigation ; Climate models ; Climate prediction ; Composition effects ; Ecosystem ; Estimation ; Machine Learning ; Microorganisms ; Organic carbon ; Organic soils ; Soil - chemistry ; Soil improvement ; Soil Microbiology ; Terrestrial ecosystems ; Uncertainty</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-08, Vol.121 (35), p.e2401916121</ispartof><rights>Copyright National Academy of Sciences Aug 27, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c209t-beef22428888216d57ed1a0b5011afca87a5ef26b51d9781ccd94e02e3afce9b3</cites><orcidid>0000-0001-7026-6312 ; 0000-0001-5674-8913 ; 0000-0001-6011-2512 ; 0009-0005-1547-051X ; 0000-0001-5443-4486 ; 0000-0001-6789-2670 ; 0000-0002-9089-6546 ; 0000-0003-2014-0564 ; 0000-0002-7061-8346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39172788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Qian, Chao</creatorcontrib><creatorcontrib>Xue, Ke</creatorcontrib><creatorcontrib>Jörgensen, Rainer Georg</creatorcontrib><creatorcontrib>Keiluweit, Marco</creatorcontrib><creatorcontrib>Liang, Chao</creatorcontrib><creatorcontrib>Zhu, Xuefeng</creatorcontrib><creatorcontrib>Chen, Ji</creatorcontrib><creatorcontrib>Sun, Yishen</creatorcontrib><creatorcontrib>Ni, Haowei</creatorcontrib><creatorcontrib>Ding, Jixian</creatorcontrib><creatorcontrib>Huang, Weigen</creatorcontrib><creatorcontrib>Mao, Jingdong</creatorcontrib><creatorcontrib>Tan, Rong-Xi</creatorcontrib><creatorcontrib>Zhou, Jizhong</creatorcontrib><creatorcontrib>Crowther, Thomas W</creatorcontrib><creatorcontrib>Zhou, Zhi-Hua</creatorcontrib><creatorcontrib>Zhang, Jiabao</creatorcontrib><creatorcontrib>Liang, Yuting</creatorcontrib><title>Reducing the uncertainty in estimating soil microbial-derived carbon storage</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and plays a crucial role in mitigating climate change and enhancing soil productivity. Microbial-derived carbon (MDC) is the main component of the persistent SOC pool. However, current formulas used to estimate the proportional contribution of MDC are plagued by uncertainties due to limited sample sizes and the neglect of bacterial group composition effects. Here, we compiled the comprehensive global dataset and employed machine learning approaches to refine our quantitative understanding of MDC contributions to total carbon storage. Our efforts resulted in a reduction in the relative standard errors in prevailing estimations by an average of 71% and minimized the effect of global variations in bacterial group compositions on estimating MDC. Our estimation indicates that MDC contributes approximately 758 Pg, representing approximately 40% of the global soil carbon stock. Our study updated the formulas of MDC estimation with improving the accuracy and preserving simplicity and practicality. Given the unique biochemistry and functioning of the MDC pool, our study has direct implications for modeling efforts and predicting the land-atmosphere carbon balance under current and future climate scenarios.</description><subject>Bacteria - metabolism</subject><subject>Carbon - analysis</subject><subject>Carbon - metabolism</subject><subject>Carbon Cycle</subject><subject>Carbon Sequestration</subject><subject>Climate Change</subject><subject>Climate change mitigation</subject><subject>Climate models</subject><subject>Climate prediction</subject><subject>Composition effects</subject><subject>Ecosystem</subject><subject>Estimation</subject><subject>Machine Learning</subject><subject>Microorganisms</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>Soil - chemistry</subject><subject>Soil improvement</subject><subject>Soil Microbiology</subject><subject>Terrestrial ecosystems</subject><subject>Uncertainty</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkM1Lw0AQxRdRbK2evUnAi5e0M7tJNnuU4hcUBNFz2GwmdUs-6m4i9L93S_0A5zKH-c3jvcfYJcIcQYrFttN-zhNAhRlyPGJTBIVxlig4ZlMALuM84cmEnXm_AQCV5nDKJkKh5DLPp2z1QtVobLeOhneKxs6QG7Tthl1ku4j8YFs97K--t03UWuP60uomrsjZT6oio13Zd5EfeqfXdM5Oat14uvjeM_Z2f_e6fIxXzw9Py9tVbDioIS6Jas4TnofhmFWppAo1lCkg6troXOo0EFmZYqVkjsZUKiHgJMKVVClm7Oagu3X9xxhcFq31hppGd9SPvhCgshBPChHQ63_oph9dF9wVAiHjCapEBmpxoEI-7x3VxdaF5G5XIBT7oot90cVf0eHj6lt3LFuqfvmfZsUXLfN58g</recordid><startdate>20240827</startdate><enddate>20240827</enddate><creator>Hu, Han</creator><creator>Qian, Chao</creator><creator>Xue, Ke</creator><creator>Jörgensen, Rainer Georg</creator><creator>Keiluweit, Marco</creator><creator>Liang, Chao</creator><creator>Zhu, Xuefeng</creator><creator>Chen, Ji</creator><creator>Sun, Yishen</creator><creator>Ni, Haowei</creator><creator>Ding, Jixian</creator><creator>Huang, Weigen</creator><creator>Mao, Jingdong</creator><creator>Tan, Rong-Xi</creator><creator>Zhou, Jizhong</creator><creator>Crowther, Thomas W</creator><creator>Zhou, Zhi-Hua</creator><creator>Zhang, Jiabao</creator><creator>Liang, Yuting</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7026-6312</orcidid><orcidid>https://orcid.org/0000-0001-5674-8913</orcidid><orcidid>https://orcid.org/0000-0001-6011-2512</orcidid><orcidid>https://orcid.org/0009-0005-1547-051X</orcidid><orcidid>https://orcid.org/0000-0001-5443-4486</orcidid><orcidid>https://orcid.org/0000-0001-6789-2670</orcidid><orcidid>https://orcid.org/0000-0002-9089-6546</orcidid><orcidid>https://orcid.org/0000-0003-2014-0564</orcidid><orcidid>https://orcid.org/0000-0002-7061-8346</orcidid></search><sort><creationdate>20240827</creationdate><title>Reducing the uncertainty in estimating soil microbial-derived carbon storage</title><author>Hu, Han ; Qian, Chao ; Xue, Ke ; Jörgensen, Rainer Georg ; Keiluweit, Marco ; Liang, Chao ; Zhu, Xuefeng ; Chen, Ji ; Sun, Yishen ; Ni, Haowei ; Ding, Jixian ; Huang, Weigen ; Mao, Jingdong ; Tan, Rong-Xi ; Zhou, Jizhong ; Crowther, Thomas W ; Zhou, Zhi-Hua ; Zhang, Jiabao ; Liang, Yuting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c209t-beef22428888216d57ed1a0b5011afca87a5ef26b51d9781ccd94e02e3afce9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bacteria - metabolism</topic><topic>Carbon - analysis</topic><topic>Carbon - metabolism</topic><topic>Carbon Cycle</topic><topic>Carbon Sequestration</topic><topic>Climate Change</topic><topic>Climate change mitigation</topic><topic>Climate models</topic><topic>Climate prediction</topic><topic>Composition effects</topic><topic>Ecosystem</topic><topic>Estimation</topic><topic>Machine Learning</topic><topic>Microorganisms</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>Soil - chemistry</topic><topic>Soil improvement</topic><topic>Soil Microbiology</topic><topic>Terrestrial ecosystems</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Qian, Chao</creatorcontrib><creatorcontrib>Xue, Ke</creatorcontrib><creatorcontrib>Jörgensen, Rainer Georg</creatorcontrib><creatorcontrib>Keiluweit, Marco</creatorcontrib><creatorcontrib>Liang, Chao</creatorcontrib><creatorcontrib>Zhu, Xuefeng</creatorcontrib><creatorcontrib>Chen, Ji</creatorcontrib><creatorcontrib>Sun, Yishen</creatorcontrib><creatorcontrib>Ni, Haowei</creatorcontrib><creatorcontrib>Ding, Jixian</creatorcontrib><creatorcontrib>Huang, Weigen</creatorcontrib><creatorcontrib>Mao, Jingdong</creatorcontrib><creatorcontrib>Tan, Rong-Xi</creatorcontrib><creatorcontrib>Zhou, Jizhong</creatorcontrib><creatorcontrib>Crowther, Thomas W</creatorcontrib><creatorcontrib>Zhou, Zhi-Hua</creatorcontrib><creatorcontrib>Zhang, Jiabao</creatorcontrib><creatorcontrib>Liang, Yuting</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Han</au><au>Qian, Chao</au><au>Xue, Ke</au><au>Jörgensen, Rainer Georg</au><au>Keiluweit, Marco</au><au>Liang, Chao</au><au>Zhu, Xuefeng</au><au>Chen, Ji</au><au>Sun, Yishen</au><au>Ni, Haowei</au><au>Ding, Jixian</au><au>Huang, Weigen</au><au>Mao, Jingdong</au><au>Tan, Rong-Xi</au><au>Zhou, Jizhong</au><au>Crowther, Thomas W</au><au>Zhou, Zhi-Hua</au><au>Zhang, Jiabao</au><au>Liang, Yuting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing the uncertainty in estimating soil microbial-derived carbon storage</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-08-27</date><risdate>2024</risdate><volume>121</volume><issue>35</issue><spage>e2401916121</spage><pages>e2401916121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and plays a crucial role in mitigating climate change and enhancing soil productivity. Microbial-derived carbon (MDC) is the main component of the persistent SOC pool. However, current formulas used to estimate the proportional contribution of MDC are plagued by uncertainties due to limited sample sizes and the neglect of bacterial group composition effects. Here, we compiled the comprehensive global dataset and employed machine learning approaches to refine our quantitative understanding of MDC contributions to total carbon storage. Our efforts resulted in a reduction in the relative standard errors in prevailing estimations by an average of 71% and minimized the effect of global variations in bacterial group compositions on estimating MDC. Our estimation indicates that MDC contributes approximately 758 Pg, representing approximately 40% of the global soil carbon stock. Our study updated the formulas of MDC estimation with improving the accuracy and preserving simplicity and practicality. Given the unique biochemistry and functioning of the MDC pool, our study has direct implications for modeling efforts and predicting the land-atmosphere carbon balance under current and future climate scenarios.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>39172788</pmid><doi>10.1073/pnas.2401916121</doi><orcidid>https://orcid.org/0000-0001-7026-6312</orcidid><orcidid>https://orcid.org/0000-0001-5674-8913</orcidid><orcidid>https://orcid.org/0000-0001-6011-2512</orcidid><orcidid>https://orcid.org/0009-0005-1547-051X</orcidid><orcidid>https://orcid.org/0000-0001-5443-4486</orcidid><orcidid>https://orcid.org/0000-0001-6789-2670</orcidid><orcidid>https://orcid.org/0000-0002-9089-6546</orcidid><orcidid>https://orcid.org/0000-0003-2014-0564</orcidid><orcidid>https://orcid.org/0000-0002-7061-8346</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2024-08, Vol.121 (35), p.e2401916121 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_3096278733 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Bacteria - metabolism Carbon - analysis Carbon - metabolism Carbon Cycle Carbon Sequestration Climate Change Climate change mitigation Climate models Climate prediction Composition effects Ecosystem Estimation Machine Learning Microorganisms Organic carbon Organic soils Soil - chemistry Soil improvement Soil Microbiology Terrestrial ecosystems Uncertainty |
title | Reducing the uncertainty in estimating soil microbial-derived carbon storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20the%20uncertainty%20in%20estimating%20soil%20microbial-derived%20carbon%20storage&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hu,%20Han&rft.date=2024-08-27&rft.volume=121&rft.issue=35&rft.spage=e2401916121&rft.pages=e2401916121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2401916121&rft_dat=%3Cproquest_cross%3E3096278733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106241947&rft_id=info:pmid/39172788&rfr_iscdi=true |