Reducing the uncertainty in estimating soil microbial-derived carbon storage

Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and plays a crucial role in mitigating climate change and enhancing soil productivity. Microbial-derived carbon (MDC) is the main component of the persistent SOC pool. However, current formulas used to estimate the propor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-08, Vol.121 (35), p.e2401916121
Hauptverfasser: Hu, Han, Qian, Chao, Xue, Ke, Jörgensen, Rainer Georg, Keiluweit, Marco, Liang, Chao, Zhu, Xuefeng, Chen, Ji, Sun, Yishen, Ni, Haowei, Ding, Jixian, Huang, Weigen, Mao, Jingdong, Tan, Rong-Xi, Zhou, Jizhong, Crowther, Thomas W, Zhou, Zhi-Hua, Zhang, Jiabao, Liang, Yuting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 35
container_start_page e2401916121
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 121
creator Hu, Han
Qian, Chao
Xue, Ke
Jörgensen, Rainer Georg
Keiluweit, Marco
Liang, Chao
Zhu, Xuefeng
Chen, Ji
Sun, Yishen
Ni, Haowei
Ding, Jixian
Huang, Weigen
Mao, Jingdong
Tan, Rong-Xi
Zhou, Jizhong
Crowther, Thomas W
Zhou, Zhi-Hua
Zhang, Jiabao
Liang, Yuting
description Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and plays a crucial role in mitigating climate change and enhancing soil productivity. Microbial-derived carbon (MDC) is the main component of the persistent SOC pool. However, current formulas used to estimate the proportional contribution of MDC are plagued by uncertainties due to limited sample sizes and the neglect of bacterial group composition effects. Here, we compiled the comprehensive global dataset and employed machine learning approaches to refine our quantitative understanding of MDC contributions to total carbon storage. Our efforts resulted in a reduction in the relative standard errors in prevailing estimations by an average of 71% and minimized the effect of global variations in bacterial group compositions on estimating MDC. Our estimation indicates that MDC contributes approximately 758 Pg, representing approximately 40% of the global soil carbon stock. Our study updated the formulas of MDC estimation with improving the accuracy and preserving simplicity and practicality. Given the unique biochemistry and functioning of the MDC pool, our study has direct implications for modeling efforts and predicting the land-atmosphere carbon balance under current and future climate scenarios.
doi_str_mv 10.1073/pnas.2401916121
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3096278733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3096278733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c209t-beef22428888216d57ed1a0b5011afca87a5ef26b51d9781ccd94e02e3afce9b3</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxRdRbK2evUnAi5e0M7tJNnuU4hcUBNFz2GwmdUs-6m4i9L93S_0A5zKH-c3jvcfYJcIcQYrFttN-zhNAhRlyPGJTBIVxlig4ZlMALuM84cmEnXm_AQCV5nDKJkKh5DLPp2z1QtVobLeOhneKxs6QG7Tthl1ku4j8YFs97K--t03UWuP60uomrsjZT6oio13Zd5EfeqfXdM5Oat14uvjeM_Z2f_e6fIxXzw9Py9tVbDioIS6Jas4TnofhmFWppAo1lCkg6troXOo0EFmZYqVkjsZUKiHgJMKVVClm7Oagu3X9xxhcFq31hppGd9SPvhCgshBPChHQ63_oph9dF9wVAiHjCapEBmpxoEI-7x3VxdaF5G5XIBT7oot90cVf0eHj6lt3LFuqfvmfZsUXLfN58g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106241947</pqid></control><display><type>article</type><title>Reducing the uncertainty in estimating soil microbial-derived carbon storage</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Hu, Han ; Qian, Chao ; Xue, Ke ; Jörgensen, Rainer Georg ; Keiluweit, Marco ; Liang, Chao ; Zhu, Xuefeng ; Chen, Ji ; Sun, Yishen ; Ni, Haowei ; Ding, Jixian ; Huang, Weigen ; Mao, Jingdong ; Tan, Rong-Xi ; Zhou, Jizhong ; Crowther, Thomas W ; Zhou, Zhi-Hua ; Zhang, Jiabao ; Liang, Yuting</creator><creatorcontrib>Hu, Han ; Qian, Chao ; Xue, Ke ; Jörgensen, Rainer Georg ; Keiluweit, Marco ; Liang, Chao ; Zhu, Xuefeng ; Chen, Ji ; Sun, Yishen ; Ni, Haowei ; Ding, Jixian ; Huang, Weigen ; Mao, Jingdong ; Tan, Rong-Xi ; Zhou, Jizhong ; Crowther, Thomas W ; Zhou, Zhi-Hua ; Zhang, Jiabao ; Liang, Yuting</creatorcontrib><description>Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and plays a crucial role in mitigating climate change and enhancing soil productivity. Microbial-derived carbon (MDC) is the main component of the persistent SOC pool. However, current formulas used to estimate the proportional contribution of MDC are plagued by uncertainties due to limited sample sizes and the neglect of bacterial group composition effects. Here, we compiled the comprehensive global dataset and employed machine learning approaches to refine our quantitative understanding of MDC contributions to total carbon storage. Our efforts resulted in a reduction in the relative standard errors in prevailing estimations by an average of 71% and minimized the effect of global variations in bacterial group compositions on estimating MDC. Our estimation indicates that MDC contributes approximately 758 Pg, representing approximately 40% of the global soil carbon stock. Our study updated the formulas of MDC estimation with improving the accuracy and preserving simplicity and practicality. Given the unique biochemistry and functioning of the MDC pool, our study has direct implications for modeling efforts and predicting the land-atmosphere carbon balance under current and future climate scenarios.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2401916121</identifier><identifier>PMID: 39172788</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacteria - metabolism ; Carbon - analysis ; Carbon - metabolism ; Carbon Cycle ; Carbon Sequestration ; Climate Change ; Climate change mitigation ; Climate models ; Climate prediction ; Composition effects ; Ecosystem ; Estimation ; Machine Learning ; Microorganisms ; Organic carbon ; Organic soils ; Soil - chemistry ; Soil improvement ; Soil Microbiology ; Terrestrial ecosystems ; Uncertainty</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-08, Vol.121 (35), p.e2401916121</ispartof><rights>Copyright National Academy of Sciences Aug 27, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c209t-beef22428888216d57ed1a0b5011afca87a5ef26b51d9781ccd94e02e3afce9b3</cites><orcidid>0000-0001-7026-6312 ; 0000-0001-5674-8913 ; 0000-0001-6011-2512 ; 0009-0005-1547-051X ; 0000-0001-5443-4486 ; 0000-0001-6789-2670 ; 0000-0002-9089-6546 ; 0000-0003-2014-0564 ; 0000-0002-7061-8346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39172788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Qian, Chao</creatorcontrib><creatorcontrib>Xue, Ke</creatorcontrib><creatorcontrib>Jörgensen, Rainer Georg</creatorcontrib><creatorcontrib>Keiluweit, Marco</creatorcontrib><creatorcontrib>Liang, Chao</creatorcontrib><creatorcontrib>Zhu, Xuefeng</creatorcontrib><creatorcontrib>Chen, Ji</creatorcontrib><creatorcontrib>Sun, Yishen</creatorcontrib><creatorcontrib>Ni, Haowei</creatorcontrib><creatorcontrib>Ding, Jixian</creatorcontrib><creatorcontrib>Huang, Weigen</creatorcontrib><creatorcontrib>Mao, Jingdong</creatorcontrib><creatorcontrib>Tan, Rong-Xi</creatorcontrib><creatorcontrib>Zhou, Jizhong</creatorcontrib><creatorcontrib>Crowther, Thomas W</creatorcontrib><creatorcontrib>Zhou, Zhi-Hua</creatorcontrib><creatorcontrib>Zhang, Jiabao</creatorcontrib><creatorcontrib>Liang, Yuting</creatorcontrib><title>Reducing the uncertainty in estimating soil microbial-derived carbon storage</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and plays a crucial role in mitigating climate change and enhancing soil productivity. Microbial-derived carbon (MDC) is the main component of the persistent SOC pool. However, current formulas used to estimate the proportional contribution of MDC are plagued by uncertainties due to limited sample sizes and the neglect of bacterial group composition effects. Here, we compiled the comprehensive global dataset and employed machine learning approaches to refine our quantitative understanding of MDC contributions to total carbon storage. Our efforts resulted in a reduction in the relative standard errors in prevailing estimations by an average of 71% and minimized the effect of global variations in bacterial group compositions on estimating MDC. Our estimation indicates that MDC contributes approximately 758 Pg, representing approximately 40% of the global soil carbon stock. Our study updated the formulas of MDC estimation with improving the accuracy and preserving simplicity and practicality. Given the unique biochemistry and functioning of the MDC pool, our study has direct implications for modeling efforts and predicting the land-atmosphere carbon balance under current and future climate scenarios.</description><subject>Bacteria - metabolism</subject><subject>Carbon - analysis</subject><subject>Carbon - metabolism</subject><subject>Carbon Cycle</subject><subject>Carbon Sequestration</subject><subject>Climate Change</subject><subject>Climate change mitigation</subject><subject>Climate models</subject><subject>Climate prediction</subject><subject>Composition effects</subject><subject>Ecosystem</subject><subject>Estimation</subject><subject>Machine Learning</subject><subject>Microorganisms</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>Soil - chemistry</subject><subject>Soil improvement</subject><subject>Soil Microbiology</subject><subject>Terrestrial ecosystems</subject><subject>Uncertainty</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkM1Lw0AQxRdRbK2evUnAi5e0M7tJNnuU4hcUBNFz2GwmdUs-6m4i9L93S_0A5zKH-c3jvcfYJcIcQYrFttN-zhNAhRlyPGJTBIVxlig4ZlMALuM84cmEnXm_AQCV5nDKJkKh5DLPp2z1QtVobLeOhneKxs6QG7Tthl1ku4j8YFs97K--t03UWuP60uomrsjZT6oio13Zd5EfeqfXdM5Oat14uvjeM_Z2f_e6fIxXzw9Py9tVbDioIS6Jas4TnofhmFWppAo1lCkg6troXOo0EFmZYqVkjsZUKiHgJMKVVClm7Oagu3X9xxhcFq31hppGd9SPvhCgshBPChHQ63_oph9dF9wVAiHjCapEBmpxoEI-7x3VxdaF5G5XIBT7oot90cVf0eHj6lt3LFuqfvmfZsUXLfN58g</recordid><startdate>20240827</startdate><enddate>20240827</enddate><creator>Hu, Han</creator><creator>Qian, Chao</creator><creator>Xue, Ke</creator><creator>Jörgensen, Rainer Georg</creator><creator>Keiluweit, Marco</creator><creator>Liang, Chao</creator><creator>Zhu, Xuefeng</creator><creator>Chen, Ji</creator><creator>Sun, Yishen</creator><creator>Ni, Haowei</creator><creator>Ding, Jixian</creator><creator>Huang, Weigen</creator><creator>Mao, Jingdong</creator><creator>Tan, Rong-Xi</creator><creator>Zhou, Jizhong</creator><creator>Crowther, Thomas W</creator><creator>Zhou, Zhi-Hua</creator><creator>Zhang, Jiabao</creator><creator>Liang, Yuting</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7026-6312</orcidid><orcidid>https://orcid.org/0000-0001-5674-8913</orcidid><orcidid>https://orcid.org/0000-0001-6011-2512</orcidid><orcidid>https://orcid.org/0009-0005-1547-051X</orcidid><orcidid>https://orcid.org/0000-0001-5443-4486</orcidid><orcidid>https://orcid.org/0000-0001-6789-2670</orcidid><orcidid>https://orcid.org/0000-0002-9089-6546</orcidid><orcidid>https://orcid.org/0000-0003-2014-0564</orcidid><orcidid>https://orcid.org/0000-0002-7061-8346</orcidid></search><sort><creationdate>20240827</creationdate><title>Reducing the uncertainty in estimating soil microbial-derived carbon storage</title><author>Hu, Han ; Qian, Chao ; Xue, Ke ; Jörgensen, Rainer Georg ; Keiluweit, Marco ; Liang, Chao ; Zhu, Xuefeng ; Chen, Ji ; Sun, Yishen ; Ni, Haowei ; Ding, Jixian ; Huang, Weigen ; Mao, Jingdong ; Tan, Rong-Xi ; Zhou, Jizhong ; Crowther, Thomas W ; Zhou, Zhi-Hua ; Zhang, Jiabao ; Liang, Yuting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c209t-beef22428888216d57ed1a0b5011afca87a5ef26b51d9781ccd94e02e3afce9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bacteria - metabolism</topic><topic>Carbon - analysis</topic><topic>Carbon - metabolism</topic><topic>Carbon Cycle</topic><topic>Carbon Sequestration</topic><topic>Climate Change</topic><topic>Climate change mitigation</topic><topic>Climate models</topic><topic>Climate prediction</topic><topic>Composition effects</topic><topic>Ecosystem</topic><topic>Estimation</topic><topic>Machine Learning</topic><topic>Microorganisms</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>Soil - chemistry</topic><topic>Soil improvement</topic><topic>Soil Microbiology</topic><topic>Terrestrial ecosystems</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Qian, Chao</creatorcontrib><creatorcontrib>Xue, Ke</creatorcontrib><creatorcontrib>Jörgensen, Rainer Georg</creatorcontrib><creatorcontrib>Keiluweit, Marco</creatorcontrib><creatorcontrib>Liang, Chao</creatorcontrib><creatorcontrib>Zhu, Xuefeng</creatorcontrib><creatorcontrib>Chen, Ji</creatorcontrib><creatorcontrib>Sun, Yishen</creatorcontrib><creatorcontrib>Ni, Haowei</creatorcontrib><creatorcontrib>Ding, Jixian</creatorcontrib><creatorcontrib>Huang, Weigen</creatorcontrib><creatorcontrib>Mao, Jingdong</creatorcontrib><creatorcontrib>Tan, Rong-Xi</creatorcontrib><creatorcontrib>Zhou, Jizhong</creatorcontrib><creatorcontrib>Crowther, Thomas W</creatorcontrib><creatorcontrib>Zhou, Zhi-Hua</creatorcontrib><creatorcontrib>Zhang, Jiabao</creatorcontrib><creatorcontrib>Liang, Yuting</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Han</au><au>Qian, Chao</au><au>Xue, Ke</au><au>Jörgensen, Rainer Georg</au><au>Keiluweit, Marco</au><au>Liang, Chao</au><au>Zhu, Xuefeng</au><au>Chen, Ji</au><au>Sun, Yishen</au><au>Ni, Haowei</au><au>Ding, Jixian</au><au>Huang, Weigen</au><au>Mao, Jingdong</au><au>Tan, Rong-Xi</au><au>Zhou, Jizhong</au><au>Crowther, Thomas W</au><au>Zhou, Zhi-Hua</au><au>Zhang, Jiabao</au><au>Liang, Yuting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing the uncertainty in estimating soil microbial-derived carbon storage</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-08-27</date><risdate>2024</risdate><volume>121</volume><issue>35</issue><spage>e2401916121</spage><pages>e2401916121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and plays a crucial role in mitigating climate change and enhancing soil productivity. Microbial-derived carbon (MDC) is the main component of the persistent SOC pool. However, current formulas used to estimate the proportional contribution of MDC are plagued by uncertainties due to limited sample sizes and the neglect of bacterial group composition effects. Here, we compiled the comprehensive global dataset and employed machine learning approaches to refine our quantitative understanding of MDC contributions to total carbon storage. Our efforts resulted in a reduction in the relative standard errors in prevailing estimations by an average of 71% and minimized the effect of global variations in bacterial group compositions on estimating MDC. Our estimation indicates that MDC contributes approximately 758 Pg, representing approximately 40% of the global soil carbon stock. Our study updated the formulas of MDC estimation with improving the accuracy and preserving simplicity and practicality. Given the unique biochemistry and functioning of the MDC pool, our study has direct implications for modeling efforts and predicting the land-atmosphere carbon balance under current and future climate scenarios.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>39172788</pmid><doi>10.1073/pnas.2401916121</doi><orcidid>https://orcid.org/0000-0001-7026-6312</orcidid><orcidid>https://orcid.org/0000-0001-5674-8913</orcidid><orcidid>https://orcid.org/0000-0001-6011-2512</orcidid><orcidid>https://orcid.org/0009-0005-1547-051X</orcidid><orcidid>https://orcid.org/0000-0001-5443-4486</orcidid><orcidid>https://orcid.org/0000-0001-6789-2670</orcidid><orcidid>https://orcid.org/0000-0002-9089-6546</orcidid><orcidid>https://orcid.org/0000-0003-2014-0564</orcidid><orcidid>https://orcid.org/0000-0002-7061-8346</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2024-08, Vol.121 (35), p.e2401916121
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_proquest_miscellaneous_3096278733
source MEDLINE; Alma/SFX Local Collection
subjects Bacteria - metabolism
Carbon - analysis
Carbon - metabolism
Carbon Cycle
Carbon Sequestration
Climate Change
Climate change mitigation
Climate models
Climate prediction
Composition effects
Ecosystem
Estimation
Machine Learning
Microorganisms
Organic carbon
Organic soils
Soil - chemistry
Soil improvement
Soil Microbiology
Terrestrial ecosystems
Uncertainty
title Reducing the uncertainty in estimating soil microbial-derived carbon storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20the%20uncertainty%20in%20estimating%20soil%20microbial-derived%20carbon%20storage&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hu,%20Han&rft.date=2024-08-27&rft.volume=121&rft.issue=35&rft.spage=e2401916121&rft.pages=e2401916121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2401916121&rft_dat=%3Cproquest_cross%3E3096278733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106241947&rft_id=info:pmid/39172788&rfr_iscdi=true