Exploring anisotropic mechanical properties of lobster claw exoskeleton through fractal models
The outstanding mechanical properties of lobster claw exoskeletons are intricately tied to their internal microstructure. Investigating this relationship can offer vital insights for designing high-performance additive manufacturing structures. Fractal theory, with its fractional dimensional perspec...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanical behavior of biomedical materials 2024-11, Vol.159, p.106699, Article 106699 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106699 |
container_title | Journal of the mechanical behavior of biomedical materials |
container_volume | 159 |
creator | Lin, Shiyun Zhang, Jiamin Peng, Chenyun Deng, Fanghang Yin, Dagang |
description | The outstanding mechanical properties of lobster claw exoskeletons are intricately tied to their internal microstructure. Investigating this relationship can offer vital insights for designing high-performance additive manufacturing structures. Fractal theory, with its fractional dimensional perspective, suits the complexity of real-world phenomena. Our study examines fully hydrated lobster claw exoskeletons using a multifaceted approach: four-point bending tests, scanning electron microscopy observations, and fractal models. Test results reveal superior mechanical properties in longitudinal specimens. Scanning electron microscopy shows non-uniform fiber helical structures and porous elements in the exoskeleton. Fracture mechanisms involve both breaking fiber fragments perpendicular to the cross-section and tearing between these fragments. The observed crack propagation paths exhibit statistical self-similarity. Consequently, we develop fractal models for the crack propagation paths in longitudinal and transverse specimens, calculating crack extension forces. Using the box-counting method and its improved variant, we determine the fractal dimensions of specimen sections. The fractal dimension of longitudinal models exceeds that of transverse models, and calculated crack extension forces are higher in longitudinal models. These findings align well with experimental data, demonstrating fractal theory's efficacy in analyzing the lobster claw exoskeleton's anisotropic mechanical properties. |
doi_str_mv | 10.1016/j.jmbbm.2024.106699 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3096278696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S175161612400331X</els_id><sourcerecordid>3096278696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c239t-7cb54efbc9a16d846d6be425636da4a4fb7aa329706ed2ef1a855c4d1be3d5e23</originalsourceid><addsrcrecordid>eNp9kMtOGzEUhq2qqAm0T1AJednNpPZ4xjNedFFFoSAhdQPbWr6cSRw842A7EN4ep4EuuzoX_f-5fAh9pWRBCeXft4vtqPW4qEndlA7nQnxAc9p3fUVoTz6WvGtpxSmnM3Se0pYQTkjff0IzJmjHGsHn6M_qsPMhummN1eRSyDHsnMEjmE2pjfJ4VzoQs4OEw4B90ClDxMarZwyHkB7AQw4TzpsY9usNHqIyudjGYMGnz-hsUD7Bl7d4ge6vVnfL6-r296-b5c_bytRM5Kozum1g0EYoym3fcMs1NHXLGbeqUc2gO6VYLTrCwdYwUNW3rWks1cBsCzW7QN9Oc8u1j3tIWY4uGfBeTRD2STIieN31XPAiZSepiSGlCIPcRTeq-CIpkUewciv_gpVHsPIEtrgu3xbs9Qj2n-edZBH8OAnK1_DkIMpkHEwGrItgsrTB_XfBK9r7jUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096278696</pqid></control><display><type>article</type><title>Exploring anisotropic mechanical properties of lobster claw exoskeleton through fractal models</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lin, Shiyun ; Zhang, Jiamin ; Peng, Chenyun ; Deng, Fanghang ; Yin, Dagang</creator><creatorcontrib>Lin, Shiyun ; Zhang, Jiamin ; Peng, Chenyun ; Deng, Fanghang ; Yin, Dagang</creatorcontrib><description>The outstanding mechanical properties of lobster claw exoskeletons are intricately tied to their internal microstructure. Investigating this relationship can offer vital insights for designing high-performance additive manufacturing structures. Fractal theory, with its fractional dimensional perspective, suits the complexity of real-world phenomena. Our study examines fully hydrated lobster claw exoskeletons using a multifaceted approach: four-point bending tests, scanning electron microscopy observations, and fractal models. Test results reveal superior mechanical properties in longitudinal specimens. Scanning electron microscopy shows non-uniform fiber helical structures and porous elements in the exoskeleton. Fracture mechanisms involve both breaking fiber fragments perpendicular to the cross-section and tearing between these fragments. The observed crack propagation paths exhibit statistical self-similarity. Consequently, we develop fractal models for the crack propagation paths in longitudinal and transverse specimens, calculating crack extension forces. Using the box-counting method and its improved variant, we determine the fractal dimensions of specimen sections. The fractal dimension of longitudinal models exceeds that of transverse models, and calculated crack extension forces are higher in longitudinal models. These findings align well with experimental data, demonstrating fractal theory's efficacy in analyzing the lobster claw exoskeleton's anisotropic mechanical properties.</description><identifier>ISSN: 1751-6161</identifier><identifier>ISSN: 1878-0180</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2024.106699</identifier><identifier>PMID: 39173496</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Animals ; Anisotropy ; Biomechanical Phenomena ; Crack propagation path ; Critical extension force ; Fractal dimension ; Fractals ; Hoof and Claw - anatomy & histology ; Lobster claw ; Materials Testing ; Mechanical behaviour ; Mechanical Phenomena ; Mechanical Tests ; Nephropidae</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2024-11, Vol.159, p.106699, Article 106699</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c239t-7cb54efbc9a16d846d6be425636da4a4fb7aa329706ed2ef1a855c4d1be3d5e23</cites><orcidid>0009-0007-8449-3664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S175161612400331X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39173496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Shiyun</creatorcontrib><creatorcontrib>Zhang, Jiamin</creatorcontrib><creatorcontrib>Peng, Chenyun</creatorcontrib><creatorcontrib>Deng, Fanghang</creatorcontrib><creatorcontrib>Yin, Dagang</creatorcontrib><title>Exploring anisotropic mechanical properties of lobster claw exoskeleton through fractal models</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>The outstanding mechanical properties of lobster claw exoskeletons are intricately tied to their internal microstructure. Investigating this relationship can offer vital insights for designing high-performance additive manufacturing structures. Fractal theory, with its fractional dimensional perspective, suits the complexity of real-world phenomena. Our study examines fully hydrated lobster claw exoskeletons using a multifaceted approach: four-point bending tests, scanning electron microscopy observations, and fractal models. Test results reveal superior mechanical properties in longitudinal specimens. Scanning electron microscopy shows non-uniform fiber helical structures and porous elements in the exoskeleton. Fracture mechanisms involve both breaking fiber fragments perpendicular to the cross-section and tearing between these fragments. The observed crack propagation paths exhibit statistical self-similarity. Consequently, we develop fractal models for the crack propagation paths in longitudinal and transverse specimens, calculating crack extension forces. Using the box-counting method and its improved variant, we determine the fractal dimensions of specimen sections. The fractal dimension of longitudinal models exceeds that of transverse models, and calculated crack extension forces are higher in longitudinal models. These findings align well with experimental data, demonstrating fractal theory's efficacy in analyzing the lobster claw exoskeleton's anisotropic mechanical properties.</description><subject>Animals</subject><subject>Anisotropy</subject><subject>Biomechanical Phenomena</subject><subject>Crack propagation path</subject><subject>Critical extension force</subject><subject>Fractal dimension</subject><subject>Fractals</subject><subject>Hoof and Claw - anatomy & histology</subject><subject>Lobster claw</subject><subject>Materials Testing</subject><subject>Mechanical behaviour</subject><subject>Mechanical Phenomena</subject><subject>Mechanical Tests</subject><subject>Nephropidae</subject><issn>1751-6161</issn><issn>1878-0180</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOGzEUhq2qqAm0T1AJednNpPZ4xjNedFFFoSAhdQPbWr6cSRw842A7EN4ep4EuuzoX_f-5fAh9pWRBCeXft4vtqPW4qEndlA7nQnxAc9p3fUVoTz6WvGtpxSmnM3Se0pYQTkjff0IzJmjHGsHn6M_qsPMhummN1eRSyDHsnMEjmE2pjfJ4VzoQs4OEw4B90ClDxMarZwyHkB7AQw4TzpsY9usNHqIyudjGYMGnz-hsUD7Bl7d4ge6vVnfL6-r296-b5c_bytRM5Kozum1g0EYoym3fcMs1NHXLGbeqUc2gO6VYLTrCwdYwUNW3rWks1cBsCzW7QN9Oc8u1j3tIWY4uGfBeTRD2STIieN31XPAiZSepiSGlCIPcRTeq-CIpkUewciv_gpVHsPIEtrgu3xbs9Qj2n-edZBH8OAnK1_DkIMpkHEwGrItgsrTB_XfBK9r7jUk</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Lin, Shiyun</creator><creator>Zhang, Jiamin</creator><creator>Peng, Chenyun</creator><creator>Deng, Fanghang</creator><creator>Yin, Dagang</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0007-8449-3664</orcidid></search><sort><creationdate>202411</creationdate><title>Exploring anisotropic mechanical properties of lobster claw exoskeleton through fractal models</title><author>Lin, Shiyun ; Zhang, Jiamin ; Peng, Chenyun ; Deng, Fanghang ; Yin, Dagang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c239t-7cb54efbc9a16d846d6be425636da4a4fb7aa329706ed2ef1a855c4d1be3d5e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Anisotropy</topic><topic>Biomechanical Phenomena</topic><topic>Crack propagation path</topic><topic>Critical extension force</topic><topic>Fractal dimension</topic><topic>Fractals</topic><topic>Hoof and Claw - anatomy & histology</topic><topic>Lobster claw</topic><topic>Materials Testing</topic><topic>Mechanical behaviour</topic><topic>Mechanical Phenomena</topic><topic>Mechanical Tests</topic><topic>Nephropidae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Shiyun</creatorcontrib><creatorcontrib>Zhang, Jiamin</creatorcontrib><creatorcontrib>Peng, Chenyun</creatorcontrib><creatorcontrib>Deng, Fanghang</creatorcontrib><creatorcontrib>Yin, Dagang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Shiyun</au><au>Zhang, Jiamin</au><au>Peng, Chenyun</au><au>Deng, Fanghang</au><au>Yin, Dagang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring anisotropic mechanical properties of lobster claw exoskeleton through fractal models</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2024-11</date><risdate>2024</risdate><volume>159</volume><spage>106699</spage><pages>106699-</pages><artnum>106699</artnum><issn>1751-6161</issn><issn>1878-0180</issn><eissn>1878-0180</eissn><abstract>The outstanding mechanical properties of lobster claw exoskeletons are intricately tied to their internal microstructure. Investigating this relationship can offer vital insights for designing high-performance additive manufacturing structures. Fractal theory, with its fractional dimensional perspective, suits the complexity of real-world phenomena. Our study examines fully hydrated lobster claw exoskeletons using a multifaceted approach: four-point bending tests, scanning electron microscopy observations, and fractal models. Test results reveal superior mechanical properties in longitudinal specimens. Scanning electron microscopy shows non-uniform fiber helical structures and porous elements in the exoskeleton. Fracture mechanisms involve both breaking fiber fragments perpendicular to the cross-section and tearing between these fragments. The observed crack propagation paths exhibit statistical self-similarity. Consequently, we develop fractal models for the crack propagation paths in longitudinal and transverse specimens, calculating crack extension forces. Using the box-counting method and its improved variant, we determine the fractal dimensions of specimen sections. The fractal dimension of longitudinal models exceeds that of transverse models, and calculated crack extension forces are higher in longitudinal models. These findings align well with experimental data, demonstrating fractal theory's efficacy in analyzing the lobster claw exoskeleton's anisotropic mechanical properties.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>39173496</pmid><doi>10.1016/j.jmbbm.2024.106699</doi><orcidid>https://orcid.org/0009-0007-8449-3664</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-6161 |
ispartof | Journal of the mechanical behavior of biomedical materials, 2024-11, Vol.159, p.106699, Article 106699 |
issn | 1751-6161 1878-0180 1878-0180 |
language | eng |
recordid | cdi_proquest_miscellaneous_3096278696 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Anisotropy Biomechanical Phenomena Crack propagation path Critical extension force Fractal dimension Fractals Hoof and Claw - anatomy & histology Lobster claw Materials Testing Mechanical behaviour Mechanical Phenomena Mechanical Tests Nephropidae |
title | Exploring anisotropic mechanical properties of lobster claw exoskeleton through fractal models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A07%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20anisotropic%20mechanical%20properties%20of%20lobster%20claw%20exoskeleton%20through%20fractal%20models&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Lin,%20Shiyun&rft.date=2024-11&rft.volume=159&rft.spage=106699&rft.pages=106699-&rft.artnum=106699&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2024.106699&rft_dat=%3Cproquest_cross%3E3096278696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096278696&rft_id=info:pmid/39173496&rft_els_id=S175161612400331X&rfr_iscdi=true |