Exploring anisotropic mechanical properties of lobster claw exoskeleton through fractal models

The outstanding mechanical properties of lobster claw exoskeletons are intricately tied to their internal microstructure. Investigating this relationship can offer vital insights for designing high-performance additive manufacturing structures. Fractal theory, with its fractional dimensional perspec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2024-11, Vol.159, p.106699, Article 106699
Hauptverfasser: Lin, Shiyun, Zhang, Jiamin, Peng, Chenyun, Deng, Fanghang, Yin, Dagang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106699
container_title Journal of the mechanical behavior of biomedical materials
container_volume 159
creator Lin, Shiyun
Zhang, Jiamin
Peng, Chenyun
Deng, Fanghang
Yin, Dagang
description The outstanding mechanical properties of lobster claw exoskeletons are intricately tied to their internal microstructure. Investigating this relationship can offer vital insights for designing high-performance additive manufacturing structures. Fractal theory, with its fractional dimensional perspective, suits the complexity of real-world phenomena. Our study examines fully hydrated lobster claw exoskeletons using a multifaceted approach: four-point bending tests, scanning electron microscopy observations, and fractal models. Test results reveal superior mechanical properties in longitudinal specimens. Scanning electron microscopy shows non-uniform fiber helical structures and porous elements in the exoskeleton. Fracture mechanisms involve both breaking fiber fragments perpendicular to the cross-section and tearing between these fragments. The observed crack propagation paths exhibit statistical self-similarity. Consequently, we develop fractal models for the crack propagation paths in longitudinal and transverse specimens, calculating crack extension forces. Using the box-counting method and its improved variant, we determine the fractal dimensions of specimen sections. The fractal dimension of longitudinal models exceeds that of transverse models, and calculated crack extension forces are higher in longitudinal models. These findings align well with experimental data, demonstrating fractal theory's efficacy in analyzing the lobster claw exoskeleton's anisotropic mechanical properties.
doi_str_mv 10.1016/j.jmbbm.2024.106699
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3096278696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S175161612400331X</els_id><sourcerecordid>3096278696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c239t-7cb54efbc9a16d846d6be425636da4a4fb7aa329706ed2ef1a855c4d1be3d5e23</originalsourceid><addsrcrecordid>eNp9kMtOGzEUhq2qqAm0T1AJednNpPZ4xjNedFFFoSAhdQPbWr6cSRw842A7EN4ep4EuuzoX_f-5fAh9pWRBCeXft4vtqPW4qEndlA7nQnxAc9p3fUVoTz6WvGtpxSmnM3Se0pYQTkjff0IzJmjHGsHn6M_qsPMhummN1eRSyDHsnMEjmE2pjfJ4VzoQs4OEw4B90ClDxMarZwyHkB7AQw4TzpsY9usNHqIyudjGYMGnz-hsUD7Bl7d4ge6vVnfL6-r296-b5c_bytRM5Kozum1g0EYoym3fcMs1NHXLGbeqUc2gO6VYLTrCwdYwUNW3rWks1cBsCzW7QN9Oc8u1j3tIWY4uGfBeTRD2STIieN31XPAiZSepiSGlCIPcRTeq-CIpkUewciv_gpVHsPIEtrgu3xbs9Qj2n-edZBH8OAnK1_DkIMpkHEwGrItgsrTB_XfBK9r7jUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096278696</pqid></control><display><type>article</type><title>Exploring anisotropic mechanical properties of lobster claw exoskeleton through fractal models</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lin, Shiyun ; Zhang, Jiamin ; Peng, Chenyun ; Deng, Fanghang ; Yin, Dagang</creator><creatorcontrib>Lin, Shiyun ; Zhang, Jiamin ; Peng, Chenyun ; Deng, Fanghang ; Yin, Dagang</creatorcontrib><description>The outstanding mechanical properties of lobster claw exoskeletons are intricately tied to their internal microstructure. Investigating this relationship can offer vital insights for designing high-performance additive manufacturing structures. Fractal theory, with its fractional dimensional perspective, suits the complexity of real-world phenomena. Our study examines fully hydrated lobster claw exoskeletons using a multifaceted approach: four-point bending tests, scanning electron microscopy observations, and fractal models. Test results reveal superior mechanical properties in longitudinal specimens. Scanning electron microscopy shows non-uniform fiber helical structures and porous elements in the exoskeleton. Fracture mechanisms involve both breaking fiber fragments perpendicular to the cross-section and tearing between these fragments. The observed crack propagation paths exhibit statistical self-similarity. Consequently, we develop fractal models for the crack propagation paths in longitudinal and transverse specimens, calculating crack extension forces. Using the box-counting method and its improved variant, we determine the fractal dimensions of specimen sections. The fractal dimension of longitudinal models exceeds that of transverse models, and calculated crack extension forces are higher in longitudinal models. These findings align well with experimental data, demonstrating fractal theory's efficacy in analyzing the lobster claw exoskeleton's anisotropic mechanical properties.</description><identifier>ISSN: 1751-6161</identifier><identifier>ISSN: 1878-0180</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2024.106699</identifier><identifier>PMID: 39173496</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Animals ; Anisotropy ; Biomechanical Phenomena ; Crack propagation path ; Critical extension force ; Fractal dimension ; Fractals ; Hoof and Claw - anatomy &amp; histology ; Lobster claw ; Materials Testing ; Mechanical behaviour ; Mechanical Phenomena ; Mechanical Tests ; Nephropidae</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2024-11, Vol.159, p.106699, Article 106699</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c239t-7cb54efbc9a16d846d6be425636da4a4fb7aa329706ed2ef1a855c4d1be3d5e23</cites><orcidid>0009-0007-8449-3664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S175161612400331X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39173496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Shiyun</creatorcontrib><creatorcontrib>Zhang, Jiamin</creatorcontrib><creatorcontrib>Peng, Chenyun</creatorcontrib><creatorcontrib>Deng, Fanghang</creatorcontrib><creatorcontrib>Yin, Dagang</creatorcontrib><title>Exploring anisotropic mechanical properties of lobster claw exoskeleton through fractal models</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>The outstanding mechanical properties of lobster claw exoskeletons are intricately tied to their internal microstructure. Investigating this relationship can offer vital insights for designing high-performance additive manufacturing structures. Fractal theory, with its fractional dimensional perspective, suits the complexity of real-world phenomena. Our study examines fully hydrated lobster claw exoskeletons using a multifaceted approach: four-point bending tests, scanning electron microscopy observations, and fractal models. Test results reveal superior mechanical properties in longitudinal specimens. Scanning electron microscopy shows non-uniform fiber helical structures and porous elements in the exoskeleton. Fracture mechanisms involve both breaking fiber fragments perpendicular to the cross-section and tearing between these fragments. The observed crack propagation paths exhibit statistical self-similarity. Consequently, we develop fractal models for the crack propagation paths in longitudinal and transverse specimens, calculating crack extension forces. Using the box-counting method and its improved variant, we determine the fractal dimensions of specimen sections. The fractal dimension of longitudinal models exceeds that of transverse models, and calculated crack extension forces are higher in longitudinal models. These findings align well with experimental data, demonstrating fractal theory's efficacy in analyzing the lobster claw exoskeleton's anisotropic mechanical properties.</description><subject>Animals</subject><subject>Anisotropy</subject><subject>Biomechanical Phenomena</subject><subject>Crack propagation path</subject><subject>Critical extension force</subject><subject>Fractal dimension</subject><subject>Fractals</subject><subject>Hoof and Claw - anatomy &amp; histology</subject><subject>Lobster claw</subject><subject>Materials Testing</subject><subject>Mechanical behaviour</subject><subject>Mechanical Phenomena</subject><subject>Mechanical Tests</subject><subject>Nephropidae</subject><issn>1751-6161</issn><issn>1878-0180</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOGzEUhq2qqAm0T1AJednNpPZ4xjNedFFFoSAhdQPbWr6cSRw842A7EN4ep4EuuzoX_f-5fAh9pWRBCeXft4vtqPW4qEndlA7nQnxAc9p3fUVoTz6WvGtpxSmnM3Se0pYQTkjff0IzJmjHGsHn6M_qsPMhummN1eRSyDHsnMEjmE2pjfJ4VzoQs4OEw4B90ClDxMarZwyHkB7AQw4TzpsY9usNHqIyudjGYMGnz-hsUD7Bl7d4ge6vVnfL6-r296-b5c_bytRM5Kozum1g0EYoym3fcMs1NHXLGbeqUc2gO6VYLTrCwdYwUNW3rWks1cBsCzW7QN9Oc8u1j3tIWY4uGfBeTRD2STIieN31XPAiZSepiSGlCIPcRTeq-CIpkUewciv_gpVHsPIEtrgu3xbs9Qj2n-edZBH8OAnK1_DkIMpkHEwGrItgsrTB_XfBK9r7jUk</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Lin, Shiyun</creator><creator>Zhang, Jiamin</creator><creator>Peng, Chenyun</creator><creator>Deng, Fanghang</creator><creator>Yin, Dagang</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0007-8449-3664</orcidid></search><sort><creationdate>202411</creationdate><title>Exploring anisotropic mechanical properties of lobster claw exoskeleton through fractal models</title><author>Lin, Shiyun ; Zhang, Jiamin ; Peng, Chenyun ; Deng, Fanghang ; Yin, Dagang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c239t-7cb54efbc9a16d846d6be425636da4a4fb7aa329706ed2ef1a855c4d1be3d5e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Anisotropy</topic><topic>Biomechanical Phenomena</topic><topic>Crack propagation path</topic><topic>Critical extension force</topic><topic>Fractal dimension</topic><topic>Fractals</topic><topic>Hoof and Claw - anatomy &amp; histology</topic><topic>Lobster claw</topic><topic>Materials Testing</topic><topic>Mechanical behaviour</topic><topic>Mechanical Phenomena</topic><topic>Mechanical Tests</topic><topic>Nephropidae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Shiyun</creatorcontrib><creatorcontrib>Zhang, Jiamin</creatorcontrib><creatorcontrib>Peng, Chenyun</creatorcontrib><creatorcontrib>Deng, Fanghang</creatorcontrib><creatorcontrib>Yin, Dagang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Shiyun</au><au>Zhang, Jiamin</au><au>Peng, Chenyun</au><au>Deng, Fanghang</au><au>Yin, Dagang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring anisotropic mechanical properties of lobster claw exoskeleton through fractal models</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2024-11</date><risdate>2024</risdate><volume>159</volume><spage>106699</spage><pages>106699-</pages><artnum>106699</artnum><issn>1751-6161</issn><issn>1878-0180</issn><eissn>1878-0180</eissn><abstract>The outstanding mechanical properties of lobster claw exoskeletons are intricately tied to their internal microstructure. Investigating this relationship can offer vital insights for designing high-performance additive manufacturing structures. Fractal theory, with its fractional dimensional perspective, suits the complexity of real-world phenomena. Our study examines fully hydrated lobster claw exoskeletons using a multifaceted approach: four-point bending tests, scanning electron microscopy observations, and fractal models. Test results reveal superior mechanical properties in longitudinal specimens. Scanning electron microscopy shows non-uniform fiber helical structures and porous elements in the exoskeleton. Fracture mechanisms involve both breaking fiber fragments perpendicular to the cross-section and tearing between these fragments. The observed crack propagation paths exhibit statistical self-similarity. Consequently, we develop fractal models for the crack propagation paths in longitudinal and transverse specimens, calculating crack extension forces. Using the box-counting method and its improved variant, we determine the fractal dimensions of specimen sections. The fractal dimension of longitudinal models exceeds that of transverse models, and calculated crack extension forces are higher in longitudinal models. These findings align well with experimental data, demonstrating fractal theory's efficacy in analyzing the lobster claw exoskeleton's anisotropic mechanical properties.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>39173496</pmid><doi>10.1016/j.jmbbm.2024.106699</doi><orcidid>https://orcid.org/0009-0007-8449-3664</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1751-6161
ispartof Journal of the mechanical behavior of biomedical materials, 2024-11, Vol.159, p.106699, Article 106699
issn 1751-6161
1878-0180
1878-0180
language eng
recordid cdi_proquest_miscellaneous_3096278696
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Anisotropy
Biomechanical Phenomena
Crack propagation path
Critical extension force
Fractal dimension
Fractals
Hoof and Claw - anatomy & histology
Lobster claw
Materials Testing
Mechanical behaviour
Mechanical Phenomena
Mechanical Tests
Nephropidae
title Exploring anisotropic mechanical properties of lobster claw exoskeleton through fractal models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A07%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20anisotropic%20mechanical%20properties%20of%20lobster%20claw%20exoskeleton%20through%20fractal%20models&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Lin,%20Shiyun&rft.date=2024-11&rft.volume=159&rft.spage=106699&rft.pages=106699-&rft.artnum=106699&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2024.106699&rft_dat=%3Cproquest_cross%3E3096278696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096278696&rft_id=info:pmid/39173496&rft_els_id=S175161612400331X&rfr_iscdi=true