Electricity supply industry modelling for multiple objectives under demand growth uncertainty

Appropriate energy–environment–economic (E3) modelling provides key information for policy makers in the electricity supply industry (ESI) faced with navigating a sustainable development path. Key challenges include engaging with stakeholder values and preferences, and exploring trade-offs between c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2007-11, Vol.32 (11), p.2210-2229
Hauptverfasser: Heinrich, G., Howells, M., Basson, L., Petrie, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2229
container_issue 11
container_start_page 2210
container_title Energy (Oxford)
container_volume 32
creator Heinrich, G.
Howells, M.
Basson, L.
Petrie, J.
description Appropriate energy–environment–economic (E3) modelling provides key information for policy makers in the electricity supply industry (ESI) faced with navigating a sustainable development path. Key challenges include engaging with stakeholder values and preferences, and exploring trade-offs between competing objectives in the face of underlying uncertainty. As a case study we represent the South African ESI using a partial equilibrium E3 modelling approach, and extend the approach to include multiple objectives under selected future uncertainties. This extension is achieved by assigning cost penalties to non-cost attributes to force the model's least-cost objective function to better satisfy non-cost criteria. This paper incorporates aspects of flexibility to demand growth uncertainty into each future expansion alternative by introducing stochastic programming with recourse into the model. Technology lead times are taken into account by the inclusion of a decision node along the time horizon where aspects of real options theory are considered within the planning process. Hedging in the recourse programming is automatically translated from being purely financial, to include the other attributes that the cost penalties represent. From a retrospective analysis of the cost penalties, the correct market signals, can be derived to meet policy goal, with due regard to demand uncertainty.
doi_str_mv 10.1016/j.energy.2007.05.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30961758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544207000928</els_id><sourcerecordid>30961758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-3a5e28b4a20811f6827bd0a9c950221f5b391db280c971c83597cbc22d5fee693</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhntQcP34Bx5y0dvWSdq0zUUQWT9A8KJHCWkyXbP0yyRd6b83UsGbnl4YnndmeJLknEJKgRZXuxR7dNs5ZQBlCjyNcZCsICtgzfOcHSXH3u8AgFdCrJK3TYs6OKttmImfxrGdie3N5IObSTcYbFvbb0kzONJNbbBji2Sod7Fj9-jJ1Bt0xGCnekO2bvgM73Gm0QVl-zCfJoeNaj2e_eRJ8nq3ebl9WD893z_e3jytdSaqsM4UR1bVuWJQUdoUFStrA0powYEx2vA6E9TUrAItSqqrjItS15oxwxvEQmQnyeWyd3TDx4Q-yM56HX9XPQ6TlxmIgpa8-hdkkGccOI1gvoDaDd47bOTobKfcLCnIb9FyJxfR8lu0BC5jxNrFz37ltWobp3pt_W9X0EhxiNz1wmG0srfopNcWozhjXXQrzWD_PvQFbzyZqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20435051</pqid></control><display><type>article</type><title>Electricity supply industry modelling for multiple objectives under demand growth uncertainty</title><source>Access via ScienceDirect (Elsevier)</source><creator>Heinrich, G. ; Howells, M. ; Basson, L. ; Petrie, J.</creator><creatorcontrib>Heinrich, G. ; Howells, M. ; Basson, L. ; Petrie, J.</creatorcontrib><description>Appropriate energy–environment–economic (E3) modelling provides key information for policy makers in the electricity supply industry (ESI) faced with navigating a sustainable development path. Key challenges include engaging with stakeholder values and preferences, and exploring trade-offs between competing objectives in the face of underlying uncertainty. As a case study we represent the South African ESI using a partial equilibrium E3 modelling approach, and extend the approach to include multiple objectives under selected future uncertainties. This extension is achieved by assigning cost penalties to non-cost attributes to force the model's least-cost objective function to better satisfy non-cost criteria. This paper incorporates aspects of flexibility to demand growth uncertainty into each future expansion alternative by introducing stochastic programming with recourse into the model. Technology lead times are taken into account by the inclusion of a decision node along the time horizon where aspects of real options theory are considered within the planning process. Hedging in the recourse programming is automatically translated from being purely financial, to include the other attributes that the cost penalties represent. From a retrospective analysis of the cost penalties, the correct market signals, can be derived to meet policy goal, with due regard to demand uncertainty.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2007.05.007</identifier><identifier>CODEN: ENEYDS</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Economic data ; Electric energy ; Electricity supply industry modelling ; Energy ; Energy economics ; Energy policy ; Exact sciences and technology ; General, economic and professional studies ; Methodology. Modelling ; Multi-objective optimisation ; Stochastic programming ; Sustainability ; Uncertainty</subject><ispartof>Energy (Oxford), 2007-11, Vol.32 (11), p.2210-2229</ispartof><rights>2007 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-3a5e28b4a20811f6827bd0a9c950221f5b391db280c971c83597cbc22d5fee693</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2007.05.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19100750$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Heinrich, G.</creatorcontrib><creatorcontrib>Howells, M.</creatorcontrib><creatorcontrib>Basson, L.</creatorcontrib><creatorcontrib>Petrie, J.</creatorcontrib><title>Electricity supply industry modelling for multiple objectives under demand growth uncertainty</title><title>Energy (Oxford)</title><description>Appropriate energy–environment–economic (E3) modelling provides key information for policy makers in the electricity supply industry (ESI) faced with navigating a sustainable development path. Key challenges include engaging with stakeholder values and preferences, and exploring trade-offs between competing objectives in the face of underlying uncertainty. As a case study we represent the South African ESI using a partial equilibrium E3 modelling approach, and extend the approach to include multiple objectives under selected future uncertainties. This extension is achieved by assigning cost penalties to non-cost attributes to force the model's least-cost objective function to better satisfy non-cost criteria. This paper incorporates aspects of flexibility to demand growth uncertainty into each future expansion alternative by introducing stochastic programming with recourse into the model. Technology lead times are taken into account by the inclusion of a decision node along the time horizon where aspects of real options theory are considered within the planning process. Hedging in the recourse programming is automatically translated from being purely financial, to include the other attributes that the cost penalties represent. From a retrospective analysis of the cost penalties, the correct market signals, can be derived to meet policy goal, with due regard to demand uncertainty.</description><subject>Applied sciences</subject><subject>Economic data</subject><subject>Electric energy</subject><subject>Electricity supply industry modelling</subject><subject>Energy</subject><subject>Energy economics</subject><subject>Energy policy</subject><subject>Exact sciences and technology</subject><subject>General, economic and professional studies</subject><subject>Methodology. Modelling</subject><subject>Multi-objective optimisation</subject><subject>Stochastic programming</subject><subject>Sustainability</subject><subject>Uncertainty</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhntQcP34Bx5y0dvWSdq0zUUQWT9A8KJHCWkyXbP0yyRd6b83UsGbnl4YnndmeJLknEJKgRZXuxR7dNs5ZQBlCjyNcZCsICtgzfOcHSXH3u8AgFdCrJK3TYs6OKttmImfxrGdie3N5IObSTcYbFvbb0kzONJNbbBji2Sod7Fj9-jJ1Bt0xGCnekO2bvgM73Gm0QVl-zCfJoeNaj2e_eRJ8nq3ebl9WD893z_e3jytdSaqsM4UR1bVuWJQUdoUFStrA0powYEx2vA6E9TUrAItSqqrjItS15oxwxvEQmQnyeWyd3TDx4Q-yM56HX9XPQ6TlxmIgpa8-hdkkGccOI1gvoDaDd47bOTobKfcLCnIb9FyJxfR8lu0BC5jxNrFz37ltWobp3pt_W9X0EhxiNz1wmG0srfopNcWozhjXXQrzWD_PvQFbzyZqQ</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Heinrich, G.</creator><creator>Howells, M.</creator><creator>Basson, L.</creator><creator>Petrie, J.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20071101</creationdate><title>Electricity supply industry modelling for multiple objectives under demand growth uncertainty</title><author>Heinrich, G. ; Howells, M. ; Basson, L. ; Petrie, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-3a5e28b4a20811f6827bd0a9c950221f5b391db280c971c83597cbc22d5fee693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Economic data</topic><topic>Electric energy</topic><topic>Electricity supply industry modelling</topic><topic>Energy</topic><topic>Energy economics</topic><topic>Energy policy</topic><topic>Exact sciences and technology</topic><topic>General, economic and professional studies</topic><topic>Methodology. Modelling</topic><topic>Multi-objective optimisation</topic><topic>Stochastic programming</topic><topic>Sustainability</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heinrich, G.</creatorcontrib><creatorcontrib>Howells, M.</creatorcontrib><creatorcontrib>Basson, L.</creatorcontrib><creatorcontrib>Petrie, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heinrich, G.</au><au>Howells, M.</au><au>Basson, L.</au><au>Petrie, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electricity supply industry modelling for multiple objectives under demand growth uncertainty</atitle><jtitle>Energy (Oxford)</jtitle><date>2007-11-01</date><risdate>2007</risdate><volume>32</volume><issue>11</issue><spage>2210</spage><epage>2229</epage><pages>2210-2229</pages><issn>0360-5442</issn><coden>ENEYDS</coden><abstract>Appropriate energy–environment–economic (E3) modelling provides key information for policy makers in the electricity supply industry (ESI) faced with navigating a sustainable development path. Key challenges include engaging with stakeholder values and preferences, and exploring trade-offs between competing objectives in the face of underlying uncertainty. As a case study we represent the South African ESI using a partial equilibrium E3 modelling approach, and extend the approach to include multiple objectives under selected future uncertainties. This extension is achieved by assigning cost penalties to non-cost attributes to force the model's least-cost objective function to better satisfy non-cost criteria. This paper incorporates aspects of flexibility to demand growth uncertainty into each future expansion alternative by introducing stochastic programming with recourse into the model. Technology lead times are taken into account by the inclusion of a decision node along the time horizon where aspects of real options theory are considered within the planning process. Hedging in the recourse programming is automatically translated from being purely financial, to include the other attributes that the cost penalties represent. From a retrospective analysis of the cost penalties, the correct market signals, can be derived to meet policy goal, with due regard to demand uncertainty.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2007.05.007</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2007-11, Vol.32 (11), p.2210-2229
issn 0360-5442
language eng
recordid cdi_proquest_miscellaneous_30961758
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Economic data
Electric energy
Electricity supply industry modelling
Energy
Energy economics
Energy policy
Exact sciences and technology
General, economic and professional studies
Methodology. Modelling
Multi-objective optimisation
Stochastic programming
Sustainability
Uncertainty
title Electricity supply industry modelling for multiple objectives under demand growth uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electricity%20supply%20industry%20modelling%20for%20multiple%20objectives%20under%20demand%20growth%20uncertainty&rft.jtitle=Energy%20(Oxford)&rft.au=Heinrich,%20G.&rft.date=2007-11-01&rft.volume=32&rft.issue=11&rft.spage=2210&rft.epage=2229&rft.pages=2210-2229&rft.issn=0360-5442&rft.coden=ENEYDS&rft_id=info:doi/10.1016/j.energy.2007.05.007&rft_dat=%3Cproquest_cross%3E30961758%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20435051&rft_id=info:pmid/&rft_els_id=S0360544207000928&rfr_iscdi=true