Indirect measuring of crack growth by means of a key-curve-method in pre-Cracked charpy specimens made of nodular cast iron

The determination of dynamic crack resistance curves from single specimen fracture tests requires information about the crack advance during the experiment. Here, attention is focused on crack resistance curves for nodular cast iron based on experimental data from instrumented Charpy tests. In order...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fracture 2007-05, Vol.145 (1), p.47-61
Hauptverfasser: EMRICH, Andreas, MUHLICH, Uwe Michael, KUNA, Meinhard, LUDWIG, Annette, TRUBITZ, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 61
container_issue 1
container_start_page 47
container_title International journal of fracture
container_volume 145
creator EMRICH, Andreas
MUHLICH, Uwe Michael
KUNA, Meinhard
LUDWIG, Annette
TRUBITZ, Peter
description The determination of dynamic crack resistance curves from single specimen fracture tests requires information about the crack advance during the experiment. Here, attention is focused on crack resistance curves for nodular cast iron based on experimental data from instrumented Charpy tests. In order to estimate the actual crack length a key curve method (KCM) is employed. On the other hand, the Charpy impact tests were realized numerically using finite element calculations in conjunction with a continuum damage model (CDM) to simulate ductile crack growth. The parameters of the CDM model were determined from the experimental data of single specimen fracture tests. Equivalence between the experimental and the numerical realization of a fracture test was ensured by validating the predictions of the numerical simulations by means of low blow fracture tests. Comparison between the crack advance predicted by the numerical simulations and the results obtained using the proposed KCM shows a sufficiently well agreement with the actual crack length. Furthermore, crack resistance curves obtained from single specimen tests using either standard estimation schemes in conjunction with the KCM or numerical simulations are compared with the predictions based on low blow fracture tests.
doi_str_mv 10.1007/s10704-007-9105-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30958860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082190582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-efe31ab9ad60f84c00481eedfe69559050f8b764563e08e6a3aee7d18a018c423</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMoOI7-AG8BUbxkrXTS-TjK4MfCghc9NzXp6p3e7e60Sbcy-OftMAuChz1VUfW-TyW8jL2WcCUB7IcswYIWWyu8hFpUT9hO1laJylj1lO1AWSO8rvxz9iLnOwDw1ukd-3M9tX2isPCRMK-pn2557HhIGO75bYq_lxM_nstyymWB_J7OIqzpF4mRllNseT_xOZE4FAu1PJwwzWeeZwr9SJtrxJaKdYrtOmDiAfPC-xSnl-xZh0OmVw91z358_vT98FXcfPtyffh4I4IydhHUkZJ49Nga6JwOANpJorYj4-vaQ71Nj9bo2igCRwYVEtlWOgTpgq7Unr27cOcUf66Ul2bsc6BhwInimhsFvnbOwCZ8_6hQgqvkdtAV5pv_pHdxTdP2jaaqau-M9dt79kxeVCHFnBN1zZz6EdN5QzUlt-aSW1PakltTyG8fyJgDDl3CKfT5n9GDhspp9Rcjp5gJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259867956</pqid></control><display><type>article</type><title>Indirect measuring of crack growth by means of a key-curve-method in pre-Cracked charpy specimens made of nodular cast iron</title><source>SpringerLink Journals - AutoHoldings</source><creator>EMRICH, Andreas ; MUHLICH, Uwe Michael ; KUNA, Meinhard ; LUDWIG, Annette ; TRUBITZ, Peter</creator><creatorcontrib>EMRICH, Andreas ; MUHLICH, Uwe Michael ; KUNA, Meinhard ; LUDWIG, Annette ; TRUBITZ, Peter</creatorcontrib><description>The determination of dynamic crack resistance curves from single specimen fracture tests requires information about the crack advance during the experiment. Here, attention is focused on crack resistance curves for nodular cast iron based on experimental data from instrumented Charpy tests. In order to estimate the actual crack length a key curve method (KCM) is employed. On the other hand, the Charpy impact tests were realized numerically using finite element calculations in conjunction with a continuum damage model (CDM) to simulate ductile crack growth. The parameters of the CDM model were determined from the experimental data of single specimen fracture tests. Equivalence between the experimental and the numerical realization of a fracture test was ensured by validating the predictions of the numerical simulations by means of low blow fracture tests. Comparison between the crack advance predicted by the numerical simulations and the results obtained using the proposed KCM shows a sufficiently well agreement with the actual crack length. Furthermore, crack resistance curves obtained from single specimen tests using either standard estimation schemes in conjunction with the KCM or numerical simulations are compared with the predictions based on low blow fracture tests.</description><identifier>ISSN: 0376-9429</identifier><identifier>EISSN: 1573-2673</identifier><identifier>DOI: 10.1007/s10704-007-9105-2</identifier><identifier>CODEN: IJFRAP</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Cast iron ; Charpy impact test ; Computer simulation ; Crack propagation ; Damage assessment ; Ductile fracture ; Exact sciences and technology ; Finite element method ; Fracture mechanics ; Fracture mechanics (crack, fatigue, damage...) ; Fracture testing ; Fundamental areas of phenomenology (including applications) ; Impact strength ; Impact tests ; Mathematical analysis ; Mathematical models ; Nodular cast iron ; Numerical prediction ; Physics ; Simulation ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>International journal of fracture, 2007-05, Vol.145 (1), p.47-61</ispartof><rights>2007 INIST-CNRS</rights><rights>International Journal of Fracture is a copyright of Springer, (2007). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-efe31ab9ad60f84c00481eedfe69559050f8b764563e08e6a3aee7d18a018c423</citedby><cites>FETCH-LOGICAL-c367t-efe31ab9ad60f84c00481eedfe69559050f8b764563e08e6a3aee7d18a018c423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19040284$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>EMRICH, Andreas</creatorcontrib><creatorcontrib>MUHLICH, Uwe Michael</creatorcontrib><creatorcontrib>KUNA, Meinhard</creatorcontrib><creatorcontrib>LUDWIG, Annette</creatorcontrib><creatorcontrib>TRUBITZ, Peter</creatorcontrib><title>Indirect measuring of crack growth by means of a key-curve-method in pre-Cracked charpy specimens made of nodular cast iron</title><title>International journal of fracture</title><description>The determination of dynamic crack resistance curves from single specimen fracture tests requires information about the crack advance during the experiment. Here, attention is focused on crack resistance curves for nodular cast iron based on experimental data from instrumented Charpy tests. In order to estimate the actual crack length a key curve method (KCM) is employed. On the other hand, the Charpy impact tests were realized numerically using finite element calculations in conjunction with a continuum damage model (CDM) to simulate ductile crack growth. The parameters of the CDM model were determined from the experimental data of single specimen fracture tests. Equivalence between the experimental and the numerical realization of a fracture test was ensured by validating the predictions of the numerical simulations by means of low blow fracture tests. Comparison between the crack advance predicted by the numerical simulations and the results obtained using the proposed KCM shows a sufficiently well agreement with the actual crack length. Furthermore, crack resistance curves obtained from single specimen tests using either standard estimation schemes in conjunction with the KCM or numerical simulations are compared with the predictions based on low blow fracture tests.</description><subject>Cast iron</subject><subject>Charpy impact test</subject><subject>Computer simulation</subject><subject>Crack propagation</subject><subject>Damage assessment</subject><subject>Ductile fracture</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fracture testing</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Impact strength</subject><subject>Impact tests</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nodular cast iron</subject><subject>Numerical prediction</subject><subject>Physics</subject><subject>Simulation</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0376-9429</issn><issn>1573-2673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU2LFDEQhoMoOI7-AG8BUbxkrXTS-TjK4MfCghc9NzXp6p3e7e60Sbcy-OftMAuChz1VUfW-TyW8jL2WcCUB7IcswYIWWyu8hFpUT9hO1laJylj1lO1AWSO8rvxz9iLnOwDw1ukd-3M9tX2isPCRMK-pn2557HhIGO75bYq_lxM_nstyymWB_J7OIqzpF4mRllNseT_xOZE4FAu1PJwwzWeeZwr9SJtrxJaKdYrtOmDiAfPC-xSnl-xZh0OmVw91z358_vT98FXcfPtyffh4I4IydhHUkZJ49Nga6JwOANpJorYj4-vaQ71Nj9bo2igCRwYVEtlWOgTpgq7Unr27cOcUf66Ul2bsc6BhwInimhsFvnbOwCZ8_6hQgqvkdtAV5pv_pHdxTdP2jaaqau-M9dt79kxeVCHFnBN1zZz6EdN5QzUlt-aSW1PakltTyG8fyJgDDl3CKfT5n9GDhspp9Rcjp5gJ</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>EMRICH, Andreas</creator><creator>MUHLICH, Uwe Michael</creator><creator>KUNA, Meinhard</creator><creator>LUDWIG, Annette</creator><creator>TRUBITZ, Peter</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20070501</creationdate><title>Indirect measuring of crack growth by means of a key-curve-method in pre-Cracked charpy specimens made of nodular cast iron</title><author>EMRICH, Andreas ; MUHLICH, Uwe Michael ; KUNA, Meinhard ; LUDWIG, Annette ; TRUBITZ, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-efe31ab9ad60f84c00481eedfe69559050f8b764563e08e6a3aee7d18a018c423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Cast iron</topic><topic>Charpy impact test</topic><topic>Computer simulation</topic><topic>Crack propagation</topic><topic>Damage assessment</topic><topic>Ductile fracture</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fracture testing</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Impact strength</topic><topic>Impact tests</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nodular cast iron</topic><topic>Numerical prediction</topic><topic>Physics</topic><topic>Simulation</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>EMRICH, Andreas</creatorcontrib><creatorcontrib>MUHLICH, Uwe Michael</creatorcontrib><creatorcontrib>KUNA, Meinhard</creatorcontrib><creatorcontrib>LUDWIG, Annette</creatorcontrib><creatorcontrib>TRUBITZ, Peter</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of fracture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>EMRICH, Andreas</au><au>MUHLICH, Uwe Michael</au><au>KUNA, Meinhard</au><au>LUDWIG, Annette</au><au>TRUBITZ, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indirect measuring of crack growth by means of a key-curve-method in pre-Cracked charpy specimens made of nodular cast iron</atitle><jtitle>International journal of fracture</jtitle><date>2007-05-01</date><risdate>2007</risdate><volume>145</volume><issue>1</issue><spage>47</spage><epage>61</epage><pages>47-61</pages><issn>0376-9429</issn><eissn>1573-2673</eissn><coden>IJFRAP</coden><abstract>The determination of dynamic crack resistance curves from single specimen fracture tests requires information about the crack advance during the experiment. Here, attention is focused on crack resistance curves for nodular cast iron based on experimental data from instrumented Charpy tests. In order to estimate the actual crack length a key curve method (KCM) is employed. On the other hand, the Charpy impact tests were realized numerically using finite element calculations in conjunction with a continuum damage model (CDM) to simulate ductile crack growth. The parameters of the CDM model were determined from the experimental data of single specimen fracture tests. Equivalence between the experimental and the numerical realization of a fracture test was ensured by validating the predictions of the numerical simulations by means of low blow fracture tests. Comparison between the crack advance predicted by the numerical simulations and the results obtained using the proposed KCM shows a sufficiently well agreement with the actual crack length. Furthermore, crack resistance curves obtained from single specimen tests using either standard estimation schemes in conjunction with the KCM or numerical simulations are compared with the predictions based on low blow fracture tests.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10704-007-9105-2</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0376-9429
ispartof International journal of fracture, 2007-05, Vol.145 (1), p.47-61
issn 0376-9429
1573-2673
language eng
recordid cdi_proquest_miscellaneous_30958860
source SpringerLink Journals - AutoHoldings
subjects Cast iron
Charpy impact test
Computer simulation
Crack propagation
Damage assessment
Ductile fracture
Exact sciences and technology
Finite element method
Fracture mechanics
Fracture mechanics (crack, fatigue, damage...)
Fracture testing
Fundamental areas of phenomenology (including applications)
Impact strength
Impact tests
Mathematical analysis
Mathematical models
Nodular cast iron
Numerical prediction
Physics
Simulation
Solid mechanics
Structural and continuum mechanics
title Indirect measuring of crack growth by means of a key-curve-method in pre-Cracked charpy specimens made of nodular cast iron
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indirect%20measuring%20of%20crack%20growth%20by%20means%20of%20a%20key-curve-method%20in%20pre-Cracked%20charpy%20specimens%20made%20of%20nodular%20cast%20iron&rft.jtitle=International%20journal%20of%20fracture&rft.au=EMRICH,%20Andreas&rft.date=2007-05-01&rft.volume=145&rft.issue=1&rft.spage=47&rft.epage=61&rft.pages=47-61&rft.issn=0376-9429&rft.eissn=1573-2673&rft.coden=IJFRAP&rft_id=info:doi/10.1007/s10704-007-9105-2&rft_dat=%3Cproquest_cross%3E1082190582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259867956&rft_id=info:pmid/&rfr_iscdi=true