Computational Design of 3D Lantern Organic Framework

This study employed a computational approach, particularly Density Functional Theory at B3LYP−D3/6‐31+G(d) level to design two new classes of three‐dimensional (3D) Lantern Organic Frameworks (LOFs) materials based on trisilasumanene and porphyrin core building units. Particularly, we detail strateg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2024-11, Vol.30 (61), p.e202402383-n/a
Hauptverfasser: Nguyen, Lam H., Truong, Thanh N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 61
container_start_page e202402383
container_title Chemistry : a European journal
container_volume 30
creator Nguyen, Lam H.
Truong, Thanh N.
description This study employed a computational approach, particularly Density Functional Theory at B3LYP−D3/6‐31+G(d) level to design two new classes of three‐dimensional (3D) Lantern Organic Frameworks (LOFs) materials based on trisilasumanene and porphyrin core building units. Particularly, we detail strategies for transitioning from 1D‐LOF nanowires to extended 3D structures: first by connecting planar‐molecule base units of trisilasumanene or porphyrin using benzene‐based linkers, and then connecting silicon anchoring atoms on the bases with other bases that are vertically stacked by sp3‐hydrocarbon chains. The 3D‐LOF structures are designed to have different pore sizes through the use of various bases, bridges, and linkers. Comparisons of electronic properties of these 3D structures lead to one designing rule. That is, the gap between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the 3D materials depends only on its base and is nearly independent of the stack size or the length of the sp3‐hydrocarbon bridges. Additionally, connecting base units with linkers also extends π‐electron conjugation system leading to a reduction in HOMO‐LUMO gap. For instance, linking two trisilasumanene molecules significantly narrows HOMO‐LUMO gap by 1.75 eV while stacking these bases vertically and connecting them by linear pentane‐based bridges yield insignificant change to the gap. This study presents a computational design of a new 3D Lantern Organic Framework‐(LOFs) materials by using trisilasumanene and porphyrin‐cored bases. Using Density Functional Theory shows that HOMO‐LUMO gaps of these 3D‐LOFs are mainly determined by the base units, with minimal impact from vertical stacking via sp3‐hydrocarbon bridges on such a property. Consequently, 3D‐LOF materials promisingly have various applications such as host‐guest chemistry.
doi_str_mv 10.1002/chem.202402383
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3095676341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123990615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2983-dd01faa489bbdd0265e9d859d85fb7465d2297c8ae5f9183303a24e51fd0c8d3</originalsourceid><addsrcrecordid>eNqFkEFPwjAUgBujEUSvHs0SL16GbV_brUczQEwwXLg33dbhcFux3UL4946AmHjx0Lwevvcl70PonuAxwZg-Zx-mHlNMGaYQwwUaEk5JCJHgl2iIJYtCwUEO0I33G4yxFADXaACSCMmYGCKW2HrbtbotbaOrYGJ8uW4CWwQwCRa6aY1rgqVb66bMgpnTtdlZ93mLrgpdeXN3miO0mk1XyTxcLF_fkpdFmFEZQ5jnmBRas1imaf-nghuZx_zwijRigueUyiiLteGFJDEABk2Z4aTIcRbnMEJPR-3W2a_O-FbVpc9MVenG2M4rwJKLSAAjPfr4B93YzvUX9RShICUWhPfU-EhlznrvTKG2rqy12yuC1SGnOuRU55z9wsNJ26W1yc_4T78ekEdgV1Zm_49OJfPp-6_8GyI6fyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123990615</pqid></control><display><type>article</type><title>Computational Design of 3D Lantern Organic Framework</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nguyen, Lam H. ; Truong, Thanh N.</creator><creatorcontrib>Nguyen, Lam H. ; Truong, Thanh N.</creatorcontrib><description>This study employed a computational approach, particularly Density Functional Theory at B3LYP−D3/6‐31+G(d) level to design two new classes of three‐dimensional (3D) Lantern Organic Frameworks (LOFs) materials based on trisilasumanene and porphyrin core building units. Particularly, we detail strategies for transitioning from 1D‐LOF nanowires to extended 3D structures: first by connecting planar‐molecule base units of trisilasumanene or porphyrin using benzene‐based linkers, and then connecting silicon anchoring atoms on the bases with other bases that are vertically stacked by sp3‐hydrocarbon chains. The 3D‐LOF structures are designed to have different pore sizes through the use of various bases, bridges, and linkers. Comparisons of electronic properties of these 3D structures lead to one designing rule. That is, the gap between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the 3D materials depends only on its base and is nearly independent of the stack size or the length of the sp3‐hydrocarbon bridges. Additionally, connecting base units with linkers also extends π‐electron conjugation system leading to a reduction in HOMO‐LUMO gap. For instance, linking two trisilasumanene molecules significantly narrows HOMO‐LUMO gap by 1.75 eV while stacking these bases vertically and connecting them by linear pentane‐based bridges yield insignificant change to the gap. This study presents a computational design of a new 3D Lantern Organic Framework‐(LOFs) materials by using trisilasumanene and porphyrin‐cored bases. Using Density Functional Theory shows that HOMO‐LUMO gaps of these 3D‐LOFs are mainly determined by the base units, with minimal impact from vertical stacking via sp3‐hydrocarbon bridges on such a property. Consequently, 3D‐LOF materials promisingly have various applications such as host‐guest chemistry.</description><identifier>ISSN: 0947-6539</identifier><identifier>ISSN: 1521-3765</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202402383</identifier><identifier>PMID: 39169446</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Base stacking ; Benzene ; Computer applications ; Conjugation ; Density functional theory ; Frontier orbitals ; Host-guest chemistry ; Hydrocarbons ; Lantern organic framework ; Molecular chains ; Molecular orbitals ; Nanotechnology ; Nanowires ; Pentane ; Porphyrin ; Porphyrins ; Trisilasumanene</subject><ispartof>Chemistry : a European journal, 2024-11, Vol.30 (61), p.e202402383-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2983-dd01faa489bbdd0265e9d859d85fb7465d2297c8ae5f9183303a24e51fd0c8d3</cites><orcidid>0000-0003-3347-4379 ; 0000-0003-1832-1526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202402383$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202402383$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39169446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Lam H.</creatorcontrib><creatorcontrib>Truong, Thanh N.</creatorcontrib><title>Computational Design of 3D Lantern Organic Framework</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>This study employed a computational approach, particularly Density Functional Theory at B3LYP−D3/6‐31+G(d) level to design two new classes of three‐dimensional (3D) Lantern Organic Frameworks (LOFs) materials based on trisilasumanene and porphyrin core building units. Particularly, we detail strategies for transitioning from 1D‐LOF nanowires to extended 3D structures: first by connecting planar‐molecule base units of trisilasumanene or porphyrin using benzene‐based linkers, and then connecting silicon anchoring atoms on the bases with other bases that are vertically stacked by sp3‐hydrocarbon chains. The 3D‐LOF structures are designed to have different pore sizes through the use of various bases, bridges, and linkers. Comparisons of electronic properties of these 3D structures lead to one designing rule. That is, the gap between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the 3D materials depends only on its base and is nearly independent of the stack size or the length of the sp3‐hydrocarbon bridges. Additionally, connecting base units with linkers also extends π‐electron conjugation system leading to a reduction in HOMO‐LUMO gap. For instance, linking two trisilasumanene molecules significantly narrows HOMO‐LUMO gap by 1.75 eV while stacking these bases vertically and connecting them by linear pentane‐based bridges yield insignificant change to the gap. This study presents a computational design of a new 3D Lantern Organic Framework‐(LOFs) materials by using trisilasumanene and porphyrin‐cored bases. Using Density Functional Theory shows that HOMO‐LUMO gaps of these 3D‐LOFs are mainly determined by the base units, with minimal impact from vertical stacking via sp3‐hydrocarbon bridges on such a property. Consequently, 3D‐LOF materials promisingly have various applications such as host‐guest chemistry.</description><subject>Base stacking</subject><subject>Benzene</subject><subject>Computer applications</subject><subject>Conjugation</subject><subject>Density functional theory</subject><subject>Frontier orbitals</subject><subject>Host-guest chemistry</subject><subject>Hydrocarbons</subject><subject>Lantern organic framework</subject><subject>Molecular chains</subject><subject>Molecular orbitals</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Pentane</subject><subject>Porphyrin</subject><subject>Porphyrins</subject><subject>Trisilasumanene</subject><issn>0947-6539</issn><issn>1521-3765</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwjAUgBujEUSvHs0SL16GbV_brUczQEwwXLg33dbhcFux3UL4946AmHjx0Lwevvcl70PonuAxwZg-Zx-mHlNMGaYQwwUaEk5JCJHgl2iIJYtCwUEO0I33G4yxFADXaACSCMmYGCKW2HrbtbotbaOrYGJ8uW4CWwQwCRa6aY1rgqVb66bMgpnTtdlZ93mLrgpdeXN3miO0mk1XyTxcLF_fkpdFmFEZQ5jnmBRas1imaf-nghuZx_zwijRigueUyiiLteGFJDEABk2Z4aTIcRbnMEJPR-3W2a_O-FbVpc9MVenG2M4rwJKLSAAjPfr4B93YzvUX9RShICUWhPfU-EhlznrvTKG2rqy12yuC1SGnOuRU55z9wsNJ26W1yc_4T78ekEdgV1Zm_49OJfPp-6_8GyI6fyw</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Nguyen, Lam H.</creator><creator>Truong, Thanh N.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3347-4379</orcidid><orcidid>https://orcid.org/0000-0003-1832-1526</orcidid></search><sort><creationdate>20241104</creationdate><title>Computational Design of 3D Lantern Organic Framework</title><author>Nguyen, Lam H. ; Truong, Thanh N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2983-dd01faa489bbdd0265e9d859d85fb7465d2297c8ae5f9183303a24e51fd0c8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Base stacking</topic><topic>Benzene</topic><topic>Computer applications</topic><topic>Conjugation</topic><topic>Density functional theory</topic><topic>Frontier orbitals</topic><topic>Host-guest chemistry</topic><topic>Hydrocarbons</topic><topic>Lantern organic framework</topic><topic>Molecular chains</topic><topic>Molecular orbitals</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Pentane</topic><topic>Porphyrin</topic><topic>Porphyrins</topic><topic>Trisilasumanene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Lam H.</creatorcontrib><creatorcontrib>Truong, Thanh N.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Lam H.</au><au>Truong, Thanh N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Design of 3D Lantern Organic Framework</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2024-11-04</date><risdate>2024</risdate><volume>30</volume><issue>61</issue><spage>e202402383</spage><epage>n/a</epage><pages>e202402383-n/a</pages><issn>0947-6539</issn><issn>1521-3765</issn><eissn>1521-3765</eissn><abstract>This study employed a computational approach, particularly Density Functional Theory at B3LYP−D3/6‐31+G(d) level to design two new classes of three‐dimensional (3D) Lantern Organic Frameworks (LOFs) materials based on trisilasumanene and porphyrin core building units. Particularly, we detail strategies for transitioning from 1D‐LOF nanowires to extended 3D structures: first by connecting planar‐molecule base units of trisilasumanene or porphyrin using benzene‐based linkers, and then connecting silicon anchoring atoms on the bases with other bases that are vertically stacked by sp3‐hydrocarbon chains. The 3D‐LOF structures are designed to have different pore sizes through the use of various bases, bridges, and linkers. Comparisons of electronic properties of these 3D structures lead to one designing rule. That is, the gap between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the 3D materials depends only on its base and is nearly independent of the stack size or the length of the sp3‐hydrocarbon bridges. Additionally, connecting base units with linkers also extends π‐electron conjugation system leading to a reduction in HOMO‐LUMO gap. For instance, linking two trisilasumanene molecules significantly narrows HOMO‐LUMO gap by 1.75 eV while stacking these bases vertically and connecting them by linear pentane‐based bridges yield insignificant change to the gap. This study presents a computational design of a new 3D Lantern Organic Framework‐(LOFs) materials by using trisilasumanene and porphyrin‐cored bases. Using Density Functional Theory shows that HOMO‐LUMO gaps of these 3D‐LOFs are mainly determined by the base units, with minimal impact from vertical stacking via sp3‐hydrocarbon bridges on such a property. Consequently, 3D‐LOF materials promisingly have various applications such as host‐guest chemistry.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39169446</pmid><doi>10.1002/chem.202402383</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3347-4379</orcidid><orcidid>https://orcid.org/0000-0003-1832-1526</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2024-11, Vol.30 (61), p.e202402383-n/a
issn 0947-6539
1521-3765
1521-3765
language eng
recordid cdi_proquest_miscellaneous_3095676341
source Wiley Online Library Journals Frontfile Complete
subjects Base stacking
Benzene
Computer applications
Conjugation
Density functional theory
Frontier orbitals
Host-guest chemistry
Hydrocarbons
Lantern organic framework
Molecular chains
Molecular orbitals
Nanotechnology
Nanowires
Pentane
Porphyrin
Porphyrins
Trisilasumanene
title Computational Design of 3D Lantern Organic Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Design%20of%203D%20Lantern%20Organic%20Framework&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Nguyen,%20Lam%20H.&rft.date=2024-11-04&rft.volume=30&rft.issue=61&rft.spage=e202402383&rft.epage=n/a&rft.pages=e202402383-n/a&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202402383&rft_dat=%3Cproquest_cross%3E3123990615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123990615&rft_id=info:pmid/39169446&rfr_iscdi=true