Composition and Structure of the solid electrolyte interphase on Na-Ion Anodes Revealed by Exo- and Endogenous Dynamic Nuclear PolarizationNMR Spectroscopy

Sodium ion batteries (SIB) are among the most promising devices for large scale energy storage. Their stable and long-term performance depends on the formation of the solid electrolyte interphase (SEI), a nanosized, heterogeneous and disordered layer, formed due to degradation of the electrolyte at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-09, Vol.146 (35), p.24476-24492
Hauptverfasser: Steinberg, Yuval, Sebti, Elias, Moroz, Ilia B., Zohar, Arava, Jardón-Álvarez, Daniel, Bendikov, Tatyana, Maity, Ayan, Carmieli, Raanan, Clément, Raphaële J., Leskes, Michal
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24492
container_issue 35
container_start_page 24476
container_title Journal of the American Chemical Society
container_volume 146
creator Steinberg, Yuval
Sebti, Elias
Moroz, Ilia B.
Zohar, Arava
Jardón-Álvarez, Daniel
Bendikov, Tatyana
Maity, Ayan
Carmieli, Raanan
Clément, Raphaële J.
Leskes, Michal
description Sodium ion batteries (SIB) are among the most promising devices for large scale energy storage. Their stable and long-term performance depends on the formation of the solid electrolyte interphase (SEI), a nanosized, heterogeneous and disordered layer, formed due to degradation of the electrolyte at the anode surface. The chemical and structural properties of the SEI control the charge transfer process at the electrode–electrolyte interface, thus, there is great interest in determining these properties for understanding, and ultimately controlling, SEI functionality. However, the study of the SEI is notoriously challenging due to its heterogeneous nature and minute quantity. In this work, we present a powerful approach for probing the SEI based on solid state NMR spectroscopy with increased sensitivity from dynamic nuclear polarization (DNP). Utilizing exogenous (organic radicals) and endogenous (paramagnetic metal ion dopants) DNP sources, we obtain not only a detailed compositional map of the SEI but also, for the first time for the native SEI, determine the spatial distribution of its constituent phases. Using this approach, we perform a thorough investigation of the SEI formed on Li4Ti5O12 used as a SIB anode. We identify a compositional gradient, from organic phases at the electrolyte interface to inorganic phases toward the anode surface. We find that the use of fluoroethylene carbonate as an electrolyte additive leads to performance degradation which can be attributed to formation of a thicker SEI, rich in NaF and carbonates. We expect that this methodology can be extended to examine other titanate anodes and new electrolyte compositions, offering a unique tool for SEI investigations to enable the development of effective and long-lasting SIBs.
doi_str_mv 10.1021/jacs.4c06823
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3095674764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095674764</sourcerecordid><originalsourceid>FETCH-LOGICAL-a249t-1a7f08f26c14be8b04d75678a7beac0e6a57a930f23fb64597ef53259aaefa563</originalsourceid><addsrcrecordid>eNptkcFu1DAQhi0Eokvhxhn5yIEU20mc5Fhtl1KpLKiFczRxxjQrxw62g0hfhBvPwVPxDHjbBS6cRpY-f_-MfkKec3bCmeCvd6DCSaGYrEX-gKx4KVhWciEfkhVjTGRVLfMj8iSEXXoWouaPyVHecNnUDV-RH2s3Ti4McXCWgu3pdfSzirNH6jSNN0iDM0NP0aCK3pklIh1sRD_dQEiMpVvILtI4ta7HQK_wK4LBnnYL3Xxz2Z1zY3v3Ga2bAz1bLIyDottZGQRPPzgDfriFff6v7z-3767o9XQXFZSblqfkkQYT8NlhHpNPbzYf12-zy_fnF-vTywxE0cSMQ6VZrYVUvOiw7ljRV6Wsaqg6BMVQQllBkzMtct3Jomwq1GUuygYANZQyPyYv772Td19mDLEdh6DQGLCY1m5z1iRfUckioa_uUZV2DB51O_lhBL-0nLX7Rtp9I-2hkYS_OJjnbsT-L_yngn_R-187N3ubDv2_6zcI5Ziz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095674764</pqid></control><display><type>article</type><title>Composition and Structure of the solid electrolyte interphase on Na-Ion Anodes Revealed by Exo- and Endogenous Dynamic Nuclear PolarizationNMR Spectroscopy</title><source>ACS Publications</source><creator>Steinberg, Yuval ; Sebti, Elias ; Moroz, Ilia B. ; Zohar, Arava ; Jardón-Álvarez, Daniel ; Bendikov, Tatyana ; Maity, Ayan ; Carmieli, Raanan ; Clément, Raphaële J. ; Leskes, Michal</creator><creatorcontrib>Steinberg, Yuval ; Sebti, Elias ; Moroz, Ilia B. ; Zohar, Arava ; Jardón-Álvarez, Daniel ; Bendikov, Tatyana ; Maity, Ayan ; Carmieli, Raanan ; Clément, Raphaële J. ; Leskes, Michal</creatorcontrib><description>Sodium ion batteries (SIB) are among the most promising devices for large scale energy storage. Their stable and long-term performance depends on the formation of the solid electrolyte interphase (SEI), a nanosized, heterogeneous and disordered layer, formed due to degradation of the electrolyte at the anode surface. The chemical and structural properties of the SEI control the charge transfer process at the electrode–electrolyte interface, thus, there is great interest in determining these properties for understanding, and ultimately controlling, SEI functionality. However, the study of the SEI is notoriously challenging due to its heterogeneous nature and minute quantity. In this work, we present a powerful approach for probing the SEI based on solid state NMR spectroscopy with increased sensitivity from dynamic nuclear polarization (DNP). Utilizing exogenous (organic radicals) and endogenous (paramagnetic metal ion dopants) DNP sources, we obtain not only a detailed compositional map of the SEI but also, for the first time for the native SEI, determine the spatial distribution of its constituent phases. Using this approach, we perform a thorough investigation of the SEI formed on Li4Ti5O12 used as a SIB anode. We identify a compositional gradient, from organic phases at the electrolyte interface to inorganic phases toward the anode surface. We find that the use of fluoroethylene carbonate as an electrolyte additive leads to performance degradation which can be attributed to formation of a thicker SEI, rich in NaF and carbonates. We expect that this methodology can be extended to examine other titanate anodes and new electrolyte compositions, offering a unique tool for SEI investigations to enable the development of effective and long-lasting SIBs.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c06823</identifier><identifier>PMID: 39169891</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2024-09, Vol.146 (35), p.24476-24492</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a249t-1a7f08f26c14be8b04d75678a7beac0e6a57a930f23fb64597ef53259aaefa563</cites><orcidid>0000-0002-3611-1162 ; 0000-0002-1637-6366 ; 0000-0003-4418-916X ; 0000-0003-2678-3536 ; 0000-0002-7172-9689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.4c06823$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.4c06823$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27080,27928,27929,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39169891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steinberg, Yuval</creatorcontrib><creatorcontrib>Sebti, Elias</creatorcontrib><creatorcontrib>Moroz, Ilia B.</creatorcontrib><creatorcontrib>Zohar, Arava</creatorcontrib><creatorcontrib>Jardón-Álvarez, Daniel</creatorcontrib><creatorcontrib>Bendikov, Tatyana</creatorcontrib><creatorcontrib>Maity, Ayan</creatorcontrib><creatorcontrib>Carmieli, Raanan</creatorcontrib><creatorcontrib>Clément, Raphaële J.</creatorcontrib><creatorcontrib>Leskes, Michal</creatorcontrib><title>Composition and Structure of the solid electrolyte interphase on Na-Ion Anodes Revealed by Exo- and Endogenous Dynamic Nuclear PolarizationNMR Spectroscopy</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Sodium ion batteries (SIB) are among the most promising devices for large scale energy storage. Their stable and long-term performance depends on the formation of the solid electrolyte interphase (SEI), a nanosized, heterogeneous and disordered layer, formed due to degradation of the electrolyte at the anode surface. The chemical and structural properties of the SEI control the charge transfer process at the electrode–electrolyte interface, thus, there is great interest in determining these properties for understanding, and ultimately controlling, SEI functionality. However, the study of the SEI is notoriously challenging due to its heterogeneous nature and minute quantity. In this work, we present a powerful approach for probing the SEI based on solid state NMR spectroscopy with increased sensitivity from dynamic nuclear polarization (DNP). Utilizing exogenous (organic radicals) and endogenous (paramagnetic metal ion dopants) DNP sources, we obtain not only a detailed compositional map of the SEI but also, for the first time for the native SEI, determine the spatial distribution of its constituent phases. Using this approach, we perform a thorough investigation of the SEI formed on Li4Ti5O12 used as a SIB anode. We identify a compositional gradient, from organic phases at the electrolyte interface to inorganic phases toward the anode surface. We find that the use of fluoroethylene carbonate as an electrolyte additive leads to performance degradation which can be attributed to formation of a thicker SEI, rich in NaF and carbonates. We expect that this methodology can be extended to examine other titanate anodes and new electrolyte compositions, offering a unique tool for SEI investigations to enable the development of effective and long-lasting SIBs.</description><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkcFu1DAQhi0Eokvhxhn5yIEU20mc5Fhtl1KpLKiFczRxxjQrxw62g0hfhBvPwVPxDHjbBS6cRpY-f_-MfkKec3bCmeCvd6DCSaGYrEX-gKx4KVhWciEfkhVjTGRVLfMj8iSEXXoWouaPyVHecNnUDV-RH2s3Ti4McXCWgu3pdfSzirNH6jSNN0iDM0NP0aCK3pklIh1sRD_dQEiMpVvILtI4ta7HQK_wK4LBnnYL3Xxz2Z1zY3v3Ga2bAz1bLIyDottZGQRPPzgDfriFff6v7z-3767o9XQXFZSblqfkkQYT8NlhHpNPbzYf12-zy_fnF-vTywxE0cSMQ6VZrYVUvOiw7ljRV6Wsaqg6BMVQQllBkzMtct3Jomwq1GUuygYANZQyPyYv772Td19mDLEdh6DQGLCY1m5z1iRfUckioa_uUZV2DB51O_lhBL-0nLX7Rtp9I-2hkYS_OJjnbsT-L_yngn_R-187N3ubDv2_6zcI5Ziz</recordid><startdate>20240904</startdate><enddate>20240904</enddate><creator>Steinberg, Yuval</creator><creator>Sebti, Elias</creator><creator>Moroz, Ilia B.</creator><creator>Zohar, Arava</creator><creator>Jardón-Álvarez, Daniel</creator><creator>Bendikov, Tatyana</creator><creator>Maity, Ayan</creator><creator>Carmieli, Raanan</creator><creator>Clément, Raphaële J.</creator><creator>Leskes, Michal</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3611-1162</orcidid><orcidid>https://orcid.org/0000-0002-1637-6366</orcidid><orcidid>https://orcid.org/0000-0003-4418-916X</orcidid><orcidid>https://orcid.org/0000-0003-2678-3536</orcidid><orcidid>https://orcid.org/0000-0002-7172-9689</orcidid></search><sort><creationdate>20240904</creationdate><title>Composition and Structure of the solid electrolyte interphase on Na-Ion Anodes Revealed by Exo- and Endogenous Dynamic Nuclear PolarizationNMR Spectroscopy</title><author>Steinberg, Yuval ; Sebti, Elias ; Moroz, Ilia B. ; Zohar, Arava ; Jardón-Álvarez, Daniel ; Bendikov, Tatyana ; Maity, Ayan ; Carmieli, Raanan ; Clément, Raphaële J. ; Leskes, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a249t-1a7f08f26c14be8b04d75678a7beac0e6a57a930f23fb64597ef53259aaefa563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steinberg, Yuval</creatorcontrib><creatorcontrib>Sebti, Elias</creatorcontrib><creatorcontrib>Moroz, Ilia B.</creatorcontrib><creatorcontrib>Zohar, Arava</creatorcontrib><creatorcontrib>Jardón-Álvarez, Daniel</creatorcontrib><creatorcontrib>Bendikov, Tatyana</creatorcontrib><creatorcontrib>Maity, Ayan</creatorcontrib><creatorcontrib>Carmieli, Raanan</creatorcontrib><creatorcontrib>Clément, Raphaële J.</creatorcontrib><creatorcontrib>Leskes, Michal</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steinberg, Yuval</au><au>Sebti, Elias</au><au>Moroz, Ilia B.</au><au>Zohar, Arava</au><au>Jardón-Álvarez, Daniel</au><au>Bendikov, Tatyana</au><au>Maity, Ayan</au><au>Carmieli, Raanan</au><au>Clément, Raphaële J.</au><au>Leskes, Michal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition and Structure of the solid electrolyte interphase on Na-Ion Anodes Revealed by Exo- and Endogenous Dynamic Nuclear PolarizationNMR Spectroscopy</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-09-04</date><risdate>2024</risdate><volume>146</volume><issue>35</issue><spage>24476</spage><epage>24492</epage><pages>24476-24492</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Sodium ion batteries (SIB) are among the most promising devices for large scale energy storage. Their stable and long-term performance depends on the formation of the solid electrolyte interphase (SEI), a nanosized, heterogeneous and disordered layer, formed due to degradation of the electrolyte at the anode surface. The chemical and structural properties of the SEI control the charge transfer process at the electrode–electrolyte interface, thus, there is great interest in determining these properties for understanding, and ultimately controlling, SEI functionality. However, the study of the SEI is notoriously challenging due to its heterogeneous nature and minute quantity. In this work, we present a powerful approach for probing the SEI based on solid state NMR spectroscopy with increased sensitivity from dynamic nuclear polarization (DNP). Utilizing exogenous (organic radicals) and endogenous (paramagnetic metal ion dopants) DNP sources, we obtain not only a detailed compositional map of the SEI but also, for the first time for the native SEI, determine the spatial distribution of its constituent phases. Using this approach, we perform a thorough investigation of the SEI formed on Li4Ti5O12 used as a SIB anode. We identify a compositional gradient, from organic phases at the electrolyte interface to inorganic phases toward the anode surface. We find that the use of fluoroethylene carbonate as an electrolyte additive leads to performance degradation which can be attributed to formation of a thicker SEI, rich in NaF and carbonates. We expect that this methodology can be extended to examine other titanate anodes and new electrolyte compositions, offering a unique tool for SEI investigations to enable the development of effective and long-lasting SIBs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39169891</pmid><doi>10.1021/jacs.4c06823</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3611-1162</orcidid><orcidid>https://orcid.org/0000-0002-1637-6366</orcidid><orcidid>https://orcid.org/0000-0003-4418-916X</orcidid><orcidid>https://orcid.org/0000-0003-2678-3536</orcidid><orcidid>https://orcid.org/0000-0002-7172-9689</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2024-09, Vol.146 (35), p.24476-24492
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_proquest_miscellaneous_3095674764
source ACS Publications
title Composition and Structure of the solid electrolyte interphase on Na-Ion Anodes Revealed by Exo- and Endogenous Dynamic Nuclear PolarizationNMR Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition%20and%20Structure%20of%20the%20solid%20electrolyte%20interphase%20on%20Na-Ion%20Anodes%20Revealed%20by%20Exo-%20and%20Endogenous%20Dynamic%20Nuclear%20Polarization%EE%97%B8NMR%20Spectroscopy&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Steinberg,%20Yuval&rft.date=2024-09-04&rft.volume=146&rft.issue=35&rft.spage=24476&rft.epage=24492&rft.pages=24476-24492&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c06823&rft_dat=%3Cproquest_cross%3E3095674764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095674764&rft_id=info:pmid/39169891&rfr_iscdi=true