Composition and Structure of the solid electrolyte interphase on Na-Ion Anodes Revealed by Exo- and Endogenous Dynamic Nuclear PolarizationNMR Spectroscopy
Sodium ion batteries (SIB) are among the most promising devices for large scale energy storage. Their stable and long-term performance depends on the formation of the solid electrolyte interphase (SEI), a nanosized, heterogeneous and disordered layer, formed due to degradation of the electrolyte at...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2024-09, Vol.146 (35), p.24476-24492 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24492 |
---|---|
container_issue | 35 |
container_start_page | 24476 |
container_title | Journal of the American Chemical Society |
container_volume | 146 |
creator | Steinberg, Yuval Sebti, Elias Moroz, Ilia B. Zohar, Arava Jardón-Álvarez, Daniel Bendikov, Tatyana Maity, Ayan Carmieli, Raanan Clément, Raphaële J. Leskes, Michal |
description | Sodium ion batteries (SIB) are among the most promising devices for large scale energy storage. Their stable and long-term performance depends on the formation of the solid electrolyte interphase (SEI), a nanosized, heterogeneous and disordered layer, formed due to degradation of the electrolyte at the anode surface. The chemical and structural properties of the SEI control the charge transfer process at the electrode–electrolyte interface, thus, there is great interest in determining these properties for understanding, and ultimately controlling, SEI functionality. However, the study of the SEI is notoriously challenging due to its heterogeneous nature and minute quantity. In this work, we present a powerful approach for probing the SEI based on solid state NMR spectroscopy with increased sensitivity from dynamic nuclear polarization (DNP). Utilizing exogenous (organic radicals) and endogenous (paramagnetic metal ion dopants) DNP sources, we obtain not only a detailed compositional map of the SEI but also, for the first time for the native SEI, determine the spatial distribution of its constituent phases. Using this approach, we perform a thorough investigation of the SEI formed on Li4Ti5O12 used as a SIB anode. We identify a compositional gradient, from organic phases at the electrolyte interface to inorganic phases toward the anode surface. We find that the use of fluoroethylene carbonate as an electrolyte additive leads to performance degradation which can be attributed to formation of a thicker SEI, rich in NaF and carbonates. We expect that this methodology can be extended to examine other titanate anodes and new electrolyte compositions, offering a unique tool for SEI investigations to enable the development of effective and long-lasting SIBs. |
doi_str_mv | 10.1021/jacs.4c06823 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3095674764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095674764</sourcerecordid><originalsourceid>FETCH-LOGICAL-a249t-1a7f08f26c14be8b04d75678a7beac0e6a57a930f23fb64597ef53259aaefa563</originalsourceid><addsrcrecordid>eNptkcFu1DAQhi0Eokvhxhn5yIEU20mc5Fhtl1KpLKiFczRxxjQrxw62g0hfhBvPwVPxDHjbBS6cRpY-f_-MfkKec3bCmeCvd6DCSaGYrEX-gKx4KVhWciEfkhVjTGRVLfMj8iSEXXoWouaPyVHecNnUDV-RH2s3Ti4McXCWgu3pdfSzirNH6jSNN0iDM0NP0aCK3pklIh1sRD_dQEiMpVvILtI4ta7HQK_wK4LBnnYL3Xxz2Z1zY3v3Ga2bAz1bLIyDottZGQRPPzgDfriFff6v7z-3767o9XQXFZSblqfkkQYT8NlhHpNPbzYf12-zy_fnF-vTywxE0cSMQ6VZrYVUvOiw7ljRV6Wsaqg6BMVQQllBkzMtct3Jomwq1GUuygYANZQyPyYv772Td19mDLEdh6DQGLCY1m5z1iRfUckioa_uUZV2DB51O_lhBL-0nLX7Rtp9I-2hkYS_OJjnbsT-L_yngn_R-187N3ubDv2_6zcI5Ziz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095674764</pqid></control><display><type>article</type><title>Composition and Structure of the solid electrolyte interphase on Na-Ion Anodes Revealed by Exo- and Endogenous Dynamic Nuclear PolarizationNMR Spectroscopy</title><source>ACS Publications</source><creator>Steinberg, Yuval ; Sebti, Elias ; Moroz, Ilia B. ; Zohar, Arava ; Jardón-Álvarez, Daniel ; Bendikov, Tatyana ; Maity, Ayan ; Carmieli, Raanan ; Clément, Raphaële J. ; Leskes, Michal</creator><creatorcontrib>Steinberg, Yuval ; Sebti, Elias ; Moroz, Ilia B. ; Zohar, Arava ; Jardón-Álvarez, Daniel ; Bendikov, Tatyana ; Maity, Ayan ; Carmieli, Raanan ; Clément, Raphaële J. ; Leskes, Michal</creatorcontrib><description>Sodium ion batteries (SIB) are among the most promising devices for large scale energy storage. Their stable and long-term performance depends on the formation of the solid electrolyte interphase (SEI), a nanosized, heterogeneous and disordered layer, formed due to degradation of the electrolyte at the anode surface. The chemical and structural properties of the SEI control the charge transfer process at the electrode–electrolyte interface, thus, there is great interest in determining these properties for understanding, and ultimately controlling, SEI functionality. However, the study of the SEI is notoriously challenging due to its heterogeneous nature and minute quantity. In this work, we present a powerful approach for probing the SEI based on solid state NMR spectroscopy with increased sensitivity from dynamic nuclear polarization (DNP). Utilizing exogenous (organic radicals) and endogenous (paramagnetic metal ion dopants) DNP sources, we obtain not only a detailed compositional map of the SEI but also, for the first time for the native SEI, determine the spatial distribution of its constituent phases. Using this approach, we perform a thorough investigation of the SEI formed on Li4Ti5O12 used as a SIB anode. We identify a compositional gradient, from organic phases at the electrolyte interface to inorganic phases toward the anode surface. We find that the use of fluoroethylene carbonate as an electrolyte additive leads to performance degradation which can be attributed to formation of a thicker SEI, rich in NaF and carbonates. We expect that this methodology can be extended to examine other titanate anodes and new electrolyte compositions, offering a unique tool for SEI investigations to enable the development of effective and long-lasting SIBs.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c06823</identifier><identifier>PMID: 39169891</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2024-09, Vol.146 (35), p.24476-24492</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a249t-1a7f08f26c14be8b04d75678a7beac0e6a57a930f23fb64597ef53259aaefa563</cites><orcidid>0000-0002-3611-1162 ; 0000-0002-1637-6366 ; 0000-0003-4418-916X ; 0000-0003-2678-3536 ; 0000-0002-7172-9689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.4c06823$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.4c06823$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27080,27928,27929,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39169891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steinberg, Yuval</creatorcontrib><creatorcontrib>Sebti, Elias</creatorcontrib><creatorcontrib>Moroz, Ilia B.</creatorcontrib><creatorcontrib>Zohar, Arava</creatorcontrib><creatorcontrib>Jardón-Álvarez, Daniel</creatorcontrib><creatorcontrib>Bendikov, Tatyana</creatorcontrib><creatorcontrib>Maity, Ayan</creatorcontrib><creatorcontrib>Carmieli, Raanan</creatorcontrib><creatorcontrib>Clément, Raphaële J.</creatorcontrib><creatorcontrib>Leskes, Michal</creatorcontrib><title>Composition and Structure of the solid electrolyte interphase on Na-Ion Anodes Revealed by Exo- and Endogenous Dynamic Nuclear PolarizationNMR Spectroscopy</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Sodium ion batteries (SIB) are among the most promising devices for large scale energy storage. Their stable and long-term performance depends on the formation of the solid electrolyte interphase (SEI), a nanosized, heterogeneous and disordered layer, formed due to degradation of the electrolyte at the anode surface. The chemical and structural properties of the SEI control the charge transfer process at the electrode–electrolyte interface, thus, there is great interest in determining these properties for understanding, and ultimately controlling, SEI functionality. However, the study of the SEI is notoriously challenging due to its heterogeneous nature and minute quantity. In this work, we present a powerful approach for probing the SEI based on solid state NMR spectroscopy with increased sensitivity from dynamic nuclear polarization (DNP). Utilizing exogenous (organic radicals) and endogenous (paramagnetic metal ion dopants) DNP sources, we obtain not only a detailed compositional map of the SEI but also, for the first time for the native SEI, determine the spatial distribution of its constituent phases. Using this approach, we perform a thorough investigation of the SEI formed on Li4Ti5O12 used as a SIB anode. We identify a compositional gradient, from organic phases at the electrolyte interface to inorganic phases toward the anode surface. We find that the use of fluoroethylene carbonate as an electrolyte additive leads to performance degradation which can be attributed to formation of a thicker SEI, rich in NaF and carbonates. We expect that this methodology can be extended to examine other titanate anodes and new electrolyte compositions, offering a unique tool for SEI investigations to enable the development of effective and long-lasting SIBs.</description><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkcFu1DAQhi0Eokvhxhn5yIEU20mc5Fhtl1KpLKiFczRxxjQrxw62g0hfhBvPwVPxDHjbBS6cRpY-f_-MfkKec3bCmeCvd6DCSaGYrEX-gKx4KVhWciEfkhVjTGRVLfMj8iSEXXoWouaPyVHecNnUDV-RH2s3Ti4McXCWgu3pdfSzirNH6jSNN0iDM0NP0aCK3pklIh1sRD_dQEiMpVvILtI4ta7HQK_wK4LBnnYL3Xxz2Z1zY3v3Ga2bAz1bLIyDottZGQRPPzgDfriFff6v7z-3767o9XQXFZSblqfkkQYT8NlhHpNPbzYf12-zy_fnF-vTywxE0cSMQ6VZrYVUvOiw7ljRV6Wsaqg6BMVQQllBkzMtct3Jomwq1GUuygYANZQyPyYv772Td19mDLEdh6DQGLCY1m5z1iRfUckioa_uUZV2DB51O_lhBL-0nLX7Rtp9I-2hkYS_OJjnbsT-L_yngn_R-187N3ubDv2_6zcI5Ziz</recordid><startdate>20240904</startdate><enddate>20240904</enddate><creator>Steinberg, Yuval</creator><creator>Sebti, Elias</creator><creator>Moroz, Ilia B.</creator><creator>Zohar, Arava</creator><creator>Jardón-Álvarez, Daniel</creator><creator>Bendikov, Tatyana</creator><creator>Maity, Ayan</creator><creator>Carmieli, Raanan</creator><creator>Clément, Raphaële J.</creator><creator>Leskes, Michal</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3611-1162</orcidid><orcidid>https://orcid.org/0000-0002-1637-6366</orcidid><orcidid>https://orcid.org/0000-0003-4418-916X</orcidid><orcidid>https://orcid.org/0000-0003-2678-3536</orcidid><orcidid>https://orcid.org/0000-0002-7172-9689</orcidid></search><sort><creationdate>20240904</creationdate><title>Composition and Structure of the solid electrolyte interphase on Na-Ion Anodes Revealed by Exo- and Endogenous Dynamic Nuclear PolarizationNMR Spectroscopy</title><author>Steinberg, Yuval ; Sebti, Elias ; Moroz, Ilia B. ; Zohar, Arava ; Jardón-Álvarez, Daniel ; Bendikov, Tatyana ; Maity, Ayan ; Carmieli, Raanan ; Clément, Raphaële J. ; Leskes, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a249t-1a7f08f26c14be8b04d75678a7beac0e6a57a930f23fb64597ef53259aaefa563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steinberg, Yuval</creatorcontrib><creatorcontrib>Sebti, Elias</creatorcontrib><creatorcontrib>Moroz, Ilia B.</creatorcontrib><creatorcontrib>Zohar, Arava</creatorcontrib><creatorcontrib>Jardón-Álvarez, Daniel</creatorcontrib><creatorcontrib>Bendikov, Tatyana</creatorcontrib><creatorcontrib>Maity, Ayan</creatorcontrib><creatorcontrib>Carmieli, Raanan</creatorcontrib><creatorcontrib>Clément, Raphaële J.</creatorcontrib><creatorcontrib>Leskes, Michal</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steinberg, Yuval</au><au>Sebti, Elias</au><au>Moroz, Ilia B.</au><au>Zohar, Arava</au><au>Jardón-Álvarez, Daniel</au><au>Bendikov, Tatyana</au><au>Maity, Ayan</au><au>Carmieli, Raanan</au><au>Clément, Raphaële J.</au><au>Leskes, Michal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition and Structure of the solid electrolyte interphase on Na-Ion Anodes Revealed by Exo- and Endogenous Dynamic Nuclear PolarizationNMR Spectroscopy</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-09-04</date><risdate>2024</risdate><volume>146</volume><issue>35</issue><spage>24476</spage><epage>24492</epage><pages>24476-24492</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Sodium ion batteries (SIB) are among the most promising devices for large scale energy storage. Their stable and long-term performance depends on the formation of the solid electrolyte interphase (SEI), a nanosized, heterogeneous and disordered layer, formed due to degradation of the electrolyte at the anode surface. The chemical and structural properties of the SEI control the charge transfer process at the electrode–electrolyte interface, thus, there is great interest in determining these properties for understanding, and ultimately controlling, SEI functionality. However, the study of the SEI is notoriously challenging due to its heterogeneous nature and minute quantity. In this work, we present a powerful approach for probing the SEI based on solid state NMR spectroscopy with increased sensitivity from dynamic nuclear polarization (DNP). Utilizing exogenous (organic radicals) and endogenous (paramagnetic metal ion dopants) DNP sources, we obtain not only a detailed compositional map of the SEI but also, for the first time for the native SEI, determine the spatial distribution of its constituent phases. Using this approach, we perform a thorough investigation of the SEI formed on Li4Ti5O12 used as a SIB anode. We identify a compositional gradient, from organic phases at the electrolyte interface to inorganic phases toward the anode surface. We find that the use of fluoroethylene carbonate as an electrolyte additive leads to performance degradation which can be attributed to formation of a thicker SEI, rich in NaF and carbonates. We expect that this methodology can be extended to examine other titanate anodes and new electrolyte compositions, offering a unique tool for SEI investigations to enable the development of effective and long-lasting SIBs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39169891</pmid><doi>10.1021/jacs.4c06823</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3611-1162</orcidid><orcidid>https://orcid.org/0000-0002-1637-6366</orcidid><orcidid>https://orcid.org/0000-0003-4418-916X</orcidid><orcidid>https://orcid.org/0000-0003-2678-3536</orcidid><orcidid>https://orcid.org/0000-0002-7172-9689</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2024-09, Vol.146 (35), p.24476-24492 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_3095674764 |
source | ACS Publications |
title | Composition and Structure of the solid electrolyte interphase on Na-Ion Anodes Revealed by Exo- and Endogenous Dynamic Nuclear PolarizationNMR Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition%20and%20Structure%20of%20the%20solid%20electrolyte%20interphase%20on%20Na-Ion%20Anodes%20Revealed%20by%20Exo-%20and%20Endogenous%20Dynamic%20Nuclear%20Polarization%EE%97%B8NMR%20Spectroscopy&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Steinberg,%20Yuval&rft.date=2024-09-04&rft.volume=146&rft.issue=35&rft.spage=24476&rft.epage=24492&rft.pages=24476-24492&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c06823&rft_dat=%3Cproquest_cross%3E3095674764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095674764&rft_id=info:pmid/39169891&rfr_iscdi=true |