Post‐transfer adaptation of HGT‐acquired genes and contribution to guanine metabolic diversification in land plants
Summary Horizontal gene transfer (HGT) is a major driving force in the evolution of prokaryotic and eukaryotic genomes. Despite recent advances in distribution and ecological importance, the extensive pattern, especially in seed plants, and post‐transfer adaptation of HGT‐acquired genes in land plan...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2024-10, Vol.244 (2), p.694-707 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 707 |
---|---|
container_issue | 2 |
container_start_page | 694 |
container_title | The New phytologist |
container_volume | 244 |
creator | Wu, Jun‐Jie Deng, Qian‐Wen Qiu, Yi‐Yang Liu, Chao Lin, Chen‐Feng Ru, Ya‐Lu Sun, Yue Lai, Jun Liu, Lu‐Xian Shen, Xing‐Xing Pan, Ronghui Zhao, Yun‐Peng |
description | Summary
Horizontal gene transfer (HGT) is a major driving force in the evolution of prokaryotic and eukaryotic genomes. Despite recent advances in distribution and ecological importance, the extensive pattern, especially in seed plants, and post‐transfer adaptation of HGT‐acquired genes in land plants remain elusive.
We systematically identified 1150 foreign genes in 522 land plant genomes that were likely acquired via at least 322 distinct transfers from nonplant donors and confirmed that recent HGT events were unevenly distributed between seedless and seed plants.
HGT‐acquired genes evolved to be more similar to native genes in terms of average intron length due to intron gains, and HGT‐acquired genes containing introns exhibited higher expression levels than those lacking introns, suggesting that intron gains may be involved in the post‐transfer adaptation of HGT in land plants.
Functional validation of bacteria‐derived gene GuaD in mosses and gymnosperms revealed that the invasion of foreign genes introduced a novel bypass of guanine degradation and resulted in the loss of native pathway genes in some gymnosperms, eventually shaping three major types of guanine metabolism in land plants. We conclude that HGT has played a critical role in land plant evolution. |
doi_str_mv | 10.1111/nph.20040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3095178114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095178114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2780-391817eaadf33284bd0129fbb5d42793475398cb999dd3200122d0c7a7ac70903</originalsourceid><addsrcrecordid>eNp1kc8uBTEYxRshXH8WXkCa2LAY-mfudLoUwZUIFiR2TaftUJnbjrZD7DyCZ_Qkeg0WEl18XXy_7-TkHAC2MTrA-R26_uGAIFSiJTDBZcWLGlO2DCYIkbqoyupuDazH-IgQ4tOKrII1ynFVlYRNwMu1j-nj7T0F6WJrApRa9kkm6x30LZyd3eSlVE-DDUbDe-NMhNJpqLxLwTbDF5g8vB-ks87AuUmy8Z1VUNtnE6JtrRrVrIPd4rLPM8VNsNLKLpqt738D3J6e3BzPiours_Pjo4tCEVajIhutMTNS6pZSUpeNRpjwtmmmOtvntGRTymvVcM61pjkDTIhGikkmFUMc0Q2wN-r2wT8NJiYxt1GZLpswfoiC5kgwqzEuM7r7B330Q3DZnaAYs5xXTRbU_kip4GMMphV9sHMZXgVGYtGGyG2IrzYyu_OtODRzo3_Jn_gzcDgCL7Yzr_8ricvr2Sj5CVrGlfI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117642824</pqid></control><display><type>article</type><title>Post‐transfer adaptation of HGT‐acquired genes and contribution to guanine metabolic diversification in land plants</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wu, Jun‐Jie ; Deng, Qian‐Wen ; Qiu, Yi‐Yang ; Liu, Chao ; Lin, Chen‐Feng ; Ru, Ya‐Lu ; Sun, Yue ; Lai, Jun ; Liu, Lu‐Xian ; Shen, Xing‐Xing ; Pan, Ronghui ; Zhao, Yun‐Peng</creator><creatorcontrib>Wu, Jun‐Jie ; Deng, Qian‐Wen ; Qiu, Yi‐Yang ; Liu, Chao ; Lin, Chen‐Feng ; Ru, Ya‐Lu ; Sun, Yue ; Lai, Jun ; Liu, Lu‐Xian ; Shen, Xing‐Xing ; Pan, Ronghui ; Zhao, Yun‐Peng</creatorcontrib><description>Summary
Horizontal gene transfer (HGT) is a major driving force in the evolution of prokaryotic and eukaryotic genomes. Despite recent advances in distribution and ecological importance, the extensive pattern, especially in seed plants, and post‐transfer adaptation of HGT‐acquired genes in land plants remain elusive.
We systematically identified 1150 foreign genes in 522 land plant genomes that were likely acquired via at least 322 distinct transfers from nonplant donors and confirmed that recent HGT events were unevenly distributed between seedless and seed plants.
HGT‐acquired genes evolved to be more similar to native genes in terms of average intron length due to intron gains, and HGT‐acquired genes containing introns exhibited higher expression levels than those lacking introns, suggesting that intron gains may be involved in the post‐transfer adaptation of HGT in land plants.
Functional validation of bacteria‐derived gene GuaD in mosses and gymnosperms revealed that the invasion of foreign genes introduced a novel bypass of guanine degradation and resulted in the loss of native pathway genes in some gymnosperms, eventually shaping three major types of guanine metabolism in land plants. We conclude that HGT has played a critical role in land plant evolution.</description><identifier>ISSN: 0028-646X</identifier><identifier>ISSN: 1469-8137</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.20040</identifier><identifier>PMID: 39166427</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Adaptation ; Aquatic plants ; Biodegradation ; Evolution ; Evolutionary genetics ; Force distribution ; Gene transfer ; Genes ; Genomes ; Guanine ; guanine metabolism diversification ; Gymnosperms ; horizontal gene transfer ; Horizontal transfer ; intron gains ; Introns ; Land acquisition ; land plant evolution ; Metabolism ; Plant layout ; post‐transfer adaptation</subject><ispartof>The New phytologist, 2024-10, Vol.244 (2), p.694-707</ispartof><rights>2024 The Author(s). © 2024 New Phytologist Foundation.</rights><rights>2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2780-391817eaadf33284bd0129fbb5d42793475398cb999dd3200122d0c7a7ac70903</cites><orcidid>0000-0003-4393-8472 ; 0000-0001-5765-1419 ; 0000-0002-4264-5566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.20040$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.20040$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39166427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Jun‐Jie</creatorcontrib><creatorcontrib>Deng, Qian‐Wen</creatorcontrib><creatorcontrib>Qiu, Yi‐Yang</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Lin, Chen‐Feng</creatorcontrib><creatorcontrib>Ru, Ya‐Lu</creatorcontrib><creatorcontrib>Sun, Yue</creatorcontrib><creatorcontrib>Lai, Jun</creatorcontrib><creatorcontrib>Liu, Lu‐Xian</creatorcontrib><creatorcontrib>Shen, Xing‐Xing</creatorcontrib><creatorcontrib>Pan, Ronghui</creatorcontrib><creatorcontrib>Zhao, Yun‐Peng</creatorcontrib><title>Post‐transfer adaptation of HGT‐acquired genes and contribution to guanine metabolic diversification in land plants</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary
Horizontal gene transfer (HGT) is a major driving force in the evolution of prokaryotic and eukaryotic genomes. Despite recent advances in distribution and ecological importance, the extensive pattern, especially in seed plants, and post‐transfer adaptation of HGT‐acquired genes in land plants remain elusive.
We systematically identified 1150 foreign genes in 522 land plant genomes that were likely acquired via at least 322 distinct transfers from nonplant donors and confirmed that recent HGT events were unevenly distributed between seedless and seed plants.
HGT‐acquired genes evolved to be more similar to native genes in terms of average intron length due to intron gains, and HGT‐acquired genes containing introns exhibited higher expression levels than those lacking introns, suggesting that intron gains may be involved in the post‐transfer adaptation of HGT in land plants.
Functional validation of bacteria‐derived gene GuaD in mosses and gymnosperms revealed that the invasion of foreign genes introduced a novel bypass of guanine degradation and resulted in the loss of native pathway genes in some gymnosperms, eventually shaping three major types of guanine metabolism in land plants. We conclude that HGT has played a critical role in land plant evolution.</description><subject>Adaptation</subject><subject>Aquatic plants</subject><subject>Biodegradation</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Force distribution</subject><subject>Gene transfer</subject><subject>Genes</subject><subject>Genomes</subject><subject>Guanine</subject><subject>guanine metabolism diversification</subject><subject>Gymnosperms</subject><subject>horizontal gene transfer</subject><subject>Horizontal transfer</subject><subject>intron gains</subject><subject>Introns</subject><subject>Land acquisition</subject><subject>land plant evolution</subject><subject>Metabolism</subject><subject>Plant layout</subject><subject>post‐transfer adaptation</subject><issn>0028-646X</issn><issn>1469-8137</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kc8uBTEYxRshXH8WXkCa2LAY-mfudLoUwZUIFiR2TaftUJnbjrZD7DyCZ_Qkeg0WEl18XXy_7-TkHAC2MTrA-R26_uGAIFSiJTDBZcWLGlO2DCYIkbqoyupuDazH-IgQ4tOKrII1ynFVlYRNwMu1j-nj7T0F6WJrApRa9kkm6x30LZyd3eSlVE-DDUbDe-NMhNJpqLxLwTbDF5g8vB-ks87AuUmy8Z1VUNtnE6JtrRrVrIPd4rLPM8VNsNLKLpqt738D3J6e3BzPiours_Pjo4tCEVajIhutMTNS6pZSUpeNRpjwtmmmOtvntGRTymvVcM61pjkDTIhGikkmFUMc0Q2wN-r2wT8NJiYxt1GZLpswfoiC5kgwqzEuM7r7B330Q3DZnaAYs5xXTRbU_kip4GMMphV9sHMZXgVGYtGGyG2IrzYyu_OtODRzo3_Jn_gzcDgCL7Yzr_8ricvr2Sj5CVrGlfI</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Wu, Jun‐Jie</creator><creator>Deng, Qian‐Wen</creator><creator>Qiu, Yi‐Yang</creator><creator>Liu, Chao</creator><creator>Lin, Chen‐Feng</creator><creator>Ru, Ya‐Lu</creator><creator>Sun, Yue</creator><creator>Lai, Jun</creator><creator>Liu, Lu‐Xian</creator><creator>Shen, Xing‐Xing</creator><creator>Pan, Ronghui</creator><creator>Zhao, Yun‐Peng</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4393-8472</orcidid><orcidid>https://orcid.org/0000-0001-5765-1419</orcidid><orcidid>https://orcid.org/0000-0002-4264-5566</orcidid></search><sort><creationdate>202410</creationdate><title>Post‐transfer adaptation of HGT‐acquired genes and contribution to guanine metabolic diversification in land plants</title><author>Wu, Jun‐Jie ; Deng, Qian‐Wen ; Qiu, Yi‐Yang ; Liu, Chao ; Lin, Chen‐Feng ; Ru, Ya‐Lu ; Sun, Yue ; Lai, Jun ; Liu, Lu‐Xian ; Shen, Xing‐Xing ; Pan, Ronghui ; Zhao, Yun‐Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2780-391817eaadf33284bd0129fbb5d42793475398cb999dd3200122d0c7a7ac70903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Aquatic plants</topic><topic>Biodegradation</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Force distribution</topic><topic>Gene transfer</topic><topic>Genes</topic><topic>Genomes</topic><topic>Guanine</topic><topic>guanine metabolism diversification</topic><topic>Gymnosperms</topic><topic>horizontal gene transfer</topic><topic>Horizontal transfer</topic><topic>intron gains</topic><topic>Introns</topic><topic>Land acquisition</topic><topic>land plant evolution</topic><topic>Metabolism</topic><topic>Plant layout</topic><topic>post‐transfer adaptation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jun‐Jie</creatorcontrib><creatorcontrib>Deng, Qian‐Wen</creatorcontrib><creatorcontrib>Qiu, Yi‐Yang</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Lin, Chen‐Feng</creatorcontrib><creatorcontrib>Ru, Ya‐Lu</creatorcontrib><creatorcontrib>Sun, Yue</creatorcontrib><creatorcontrib>Lai, Jun</creatorcontrib><creatorcontrib>Liu, Lu‐Xian</creatorcontrib><creatorcontrib>Shen, Xing‐Xing</creatorcontrib><creatorcontrib>Pan, Ronghui</creatorcontrib><creatorcontrib>Zhao, Yun‐Peng</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jun‐Jie</au><au>Deng, Qian‐Wen</au><au>Qiu, Yi‐Yang</au><au>Liu, Chao</au><au>Lin, Chen‐Feng</au><au>Ru, Ya‐Lu</au><au>Sun, Yue</au><au>Lai, Jun</au><au>Liu, Lu‐Xian</au><au>Shen, Xing‐Xing</au><au>Pan, Ronghui</au><au>Zhao, Yun‐Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post‐transfer adaptation of HGT‐acquired genes and contribution to guanine metabolic diversification in land plants</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2024-10</date><risdate>2024</risdate><volume>244</volume><issue>2</issue><spage>694</spage><epage>707</epage><pages>694-707</pages><issn>0028-646X</issn><issn>1469-8137</issn><eissn>1469-8137</eissn><abstract>Summary
Horizontal gene transfer (HGT) is a major driving force in the evolution of prokaryotic and eukaryotic genomes. Despite recent advances in distribution and ecological importance, the extensive pattern, especially in seed plants, and post‐transfer adaptation of HGT‐acquired genes in land plants remain elusive.
We systematically identified 1150 foreign genes in 522 land plant genomes that were likely acquired via at least 322 distinct transfers from nonplant donors and confirmed that recent HGT events were unevenly distributed between seedless and seed plants.
HGT‐acquired genes evolved to be more similar to native genes in terms of average intron length due to intron gains, and HGT‐acquired genes containing introns exhibited higher expression levels than those lacking introns, suggesting that intron gains may be involved in the post‐transfer adaptation of HGT in land plants.
Functional validation of bacteria‐derived gene GuaD in mosses and gymnosperms revealed that the invasion of foreign genes introduced a novel bypass of guanine degradation and resulted in the loss of native pathway genes in some gymnosperms, eventually shaping three major types of guanine metabolism in land plants. We conclude that HGT has played a critical role in land plant evolution.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39166427</pmid><doi>10.1111/nph.20040</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4393-8472</orcidid><orcidid>https://orcid.org/0000-0001-5765-1419</orcidid><orcidid>https://orcid.org/0000-0002-4264-5566</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2024-10, Vol.244 (2), p.694-707 |
issn | 0028-646X 1469-8137 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_3095178114 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Adaptation Aquatic plants Biodegradation Evolution Evolutionary genetics Force distribution Gene transfer Genes Genomes Guanine guanine metabolism diversification Gymnosperms horizontal gene transfer Horizontal transfer intron gains Introns Land acquisition land plant evolution Metabolism Plant layout post‐transfer adaptation |
title | Post‐transfer adaptation of HGT‐acquired genes and contribution to guanine metabolic diversification in land plants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A06%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post%E2%80%90transfer%20adaptation%20of%20HGT%E2%80%90acquired%20genes%20and%20contribution%20to%20guanine%20metabolic%20diversification%20in%20land%20plants&rft.jtitle=The%20New%20phytologist&rft.au=Wu,%20Jun%E2%80%90Jie&rft.date=2024-10&rft.volume=244&rft.issue=2&rft.spage=694&rft.epage=707&rft.pages=694-707&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.20040&rft_dat=%3Cproquest_cross%3E3095178114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117642824&rft_id=info:pmid/39166427&rfr_iscdi=true |