Random Survival Forests With Competing Events: A Subdistribution‐Based Imputation Approach

ABSTRACT Random survival forests (RSF) can be applied to many time‐to‐event research questions and are particularly useful in situations where the relationship between the independent variables and the event of interest is rather complex. However, in many clinical settings, the occurrence of the eve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrical journal 2024-09, Vol.66 (6), p.e202400014-n/a
Hauptverfasser: Behning, Charlotte, Bigerl, Alexander, Wright, Marvin N., Sekula, Peggy, Berger, Moritz, Schmid, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page e202400014
container_title Biometrical journal
container_volume 66
creator Behning, Charlotte
Bigerl, Alexander
Wright, Marvin N.
Sekula, Peggy
Berger, Moritz
Schmid, Matthias
description ABSTRACT Random survival forests (RSF) can be applied to many time‐to‐event research questions and are particularly useful in situations where the relationship between the independent variables and the event of interest is rather complex. However, in many clinical settings, the occurrence of the event of interest is affected by competing events, which means that a patient can experience an outcome other than the event of interest. Neglecting the competing event (i.e., regarding competing events as censoring) will typically result in biased estimates of the cumulative incidence function (CIF). A popular approach for competing events is Fine and Gray's subdistribution hazard model, which directly estimates the CIF by fitting a single‐event model defined on a subdistribution timescale. Here, we integrate concepts from the subdistribution hazard modeling approach into the RSF. We develop several imputation strategies that use weights as in a discrete‐time subdistribution hazard model to impute censoring times in cases where a competing event is observed. Our simulations show that the CIF is well estimated if the imputation already takes place outside the forest on the overall dataset. Especially in settings with a low rate of the event of interest or a high censoring rate, competing events must not be neglected, that is, treated as censoring. When applied to a real‐world epidemiological dataset on chronic kidney disease, the imputation approach resulted in highly plausible predictor–response relationships and CIF estimates of renal events.
doi_str_mv 10.1002/bimj.202400014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3094823998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099967171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2930-d8893eb8734b2378a642287c25ec2bc031397ddd1e1ba24db7b3bef43fd227903</originalsourceid><addsrcrecordid>eNqF0L9uFDEQBnALgcgRaCnRSjQ0e4xnnLVNdzkl5FAiJAKiQit77SM-7b_Yu4fS8Qg8Qp6FR-FJ2NMlKWioRrJ-_mb0MfaSw5wD4Fsbms0cAQUAcPGIzfgR8lwAFY_ZDAgpJyXkAXuW0mYiGgQ-ZQekeYGg5Ix9-2Ra1zXZ5Ri3YWvq7LSLPg0p-xqGq2zZNb0fQvs9O9n6dkjvssXv28vRupCGGOw4hK798_PXsUneZaumHweze8oWfR87U109Z0_Wpk7-xd08ZF9OTz4vz_Lzj-9Xy8V5XqEmyJ1SmrxVkoRFksoUAlHJCo98hbYC4qSlc457bg0KZ6Ul69eC1g5RaqBD9mafO629Hqf7yyakyte1aX03ppJAC4WktZro63_ophtjO123U1oXkks-qfleVbFLKfp12cfQmHhTcih3xZe74suH4qcPr-5iR9t498Dvm56A2IMfofY3_4krj1cXH7DgQH8BtDuPvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099967171</pqid></control><display><type>article</type><title>Random Survival Forests With Competing Events: A Subdistribution‐Based Imputation Approach</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Behning, Charlotte ; Bigerl, Alexander ; Wright, Marvin N. ; Sekula, Peggy ; Berger, Moritz ; Schmid, Matthias</creator><creatorcontrib>Behning, Charlotte ; Bigerl, Alexander ; Wright, Marvin N. ; Sekula, Peggy ; Berger, Moritz ; Schmid, Matthias</creatorcontrib><description>ABSTRACT Random survival forests (RSF) can be applied to many time‐to‐event research questions and are particularly useful in situations where the relationship between the independent variables and the event of interest is rather complex. However, in many clinical settings, the occurrence of the event of interest is affected by competing events, which means that a patient can experience an outcome other than the event of interest. Neglecting the competing event (i.e., regarding competing events as censoring) will typically result in biased estimates of the cumulative incidence function (CIF). A popular approach for competing events is Fine and Gray's subdistribution hazard model, which directly estimates the CIF by fitting a single‐event model defined on a subdistribution timescale. Here, we integrate concepts from the subdistribution hazard modeling approach into the RSF. We develop several imputation strategies that use weights as in a discrete‐time subdistribution hazard model to impute censoring times in cases where a competing event is observed. Our simulations show that the CIF is well estimated if the imputation already takes place outside the forest on the overall dataset. Especially in settings with a low rate of the event of interest or a high censoring rate, competing events must not be neglected, that is, treated as censoring. When applied to a real‐world epidemiological dataset on chronic kidney disease, the imputation approach resulted in highly plausible predictor–response relationships and CIF estimates of renal events.</description><identifier>ISSN: 0323-3847</identifier><identifier>ISSN: 1521-4036</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.202400014</identifier><identifier>PMID: 39162087</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Biometry - methods ; competing events ; Complex variables ; Datasets ; discrete time‐to‐event data ; Epidemiology ; Estimates ; Humans ; imputation ; Independent variables ; Kidney diseases ; Models, Statistical ; Proportional Hazards Models ; random survival forest ; subdistribution hazard ; Survival ; Survival Analysis</subject><ispartof>Biometrical journal, 2024-09, Vol.66 (6), p.e202400014-n/a</ispartof><rights>2024 The Author(s). published by Wiley‐VCH GmbH.</rights><rights>2024 The Author(s). Biometrical Journal published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2930-d8893eb8734b2378a642287c25ec2bc031397ddd1e1ba24db7b3bef43fd227903</cites><orcidid>0000-0002-9310-3804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.202400014$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.202400014$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39162087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Behning, Charlotte</creatorcontrib><creatorcontrib>Bigerl, Alexander</creatorcontrib><creatorcontrib>Wright, Marvin N.</creatorcontrib><creatorcontrib>Sekula, Peggy</creatorcontrib><creatorcontrib>Berger, Moritz</creatorcontrib><creatorcontrib>Schmid, Matthias</creatorcontrib><title>Random Survival Forests With Competing Events: A Subdistribution‐Based Imputation Approach</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>ABSTRACT Random survival forests (RSF) can be applied to many time‐to‐event research questions and are particularly useful in situations where the relationship between the independent variables and the event of interest is rather complex. However, in many clinical settings, the occurrence of the event of interest is affected by competing events, which means that a patient can experience an outcome other than the event of interest. Neglecting the competing event (i.e., regarding competing events as censoring) will typically result in biased estimates of the cumulative incidence function (CIF). A popular approach for competing events is Fine and Gray's subdistribution hazard model, which directly estimates the CIF by fitting a single‐event model defined on a subdistribution timescale. Here, we integrate concepts from the subdistribution hazard modeling approach into the RSF. We develop several imputation strategies that use weights as in a discrete‐time subdistribution hazard model to impute censoring times in cases where a competing event is observed. Our simulations show that the CIF is well estimated if the imputation already takes place outside the forest on the overall dataset. Especially in settings with a low rate of the event of interest or a high censoring rate, competing events must not be neglected, that is, treated as censoring. When applied to a real‐world epidemiological dataset on chronic kidney disease, the imputation approach resulted in highly plausible predictor–response relationships and CIF estimates of renal events.</description><subject>Biometry - methods</subject><subject>competing events</subject><subject>Complex variables</subject><subject>Datasets</subject><subject>discrete time‐to‐event data</subject><subject>Epidemiology</subject><subject>Estimates</subject><subject>Humans</subject><subject>imputation</subject><subject>Independent variables</subject><subject>Kidney diseases</subject><subject>Models, Statistical</subject><subject>Proportional Hazards Models</subject><subject>random survival forest</subject><subject>subdistribution hazard</subject><subject>Survival</subject><subject>Survival Analysis</subject><issn>0323-3847</issn><issn>1521-4036</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqF0L9uFDEQBnALgcgRaCnRSjQ0e4xnnLVNdzkl5FAiJAKiQit77SM-7b_Yu4fS8Qg8Qp6FR-FJ2NMlKWioRrJ-_mb0MfaSw5wD4Fsbms0cAQUAcPGIzfgR8lwAFY_ZDAgpJyXkAXuW0mYiGgQ-ZQekeYGg5Ix9-2Ra1zXZ5Ri3YWvq7LSLPg0p-xqGq2zZNb0fQvs9O9n6dkjvssXv28vRupCGGOw4hK798_PXsUneZaumHweze8oWfR87U109Z0_Wpk7-xd08ZF9OTz4vz_Lzj-9Xy8V5XqEmyJ1SmrxVkoRFksoUAlHJCo98hbYC4qSlc457bg0KZ6Ul69eC1g5RaqBD9mafO629Hqf7yyakyte1aX03ppJAC4WktZro63_ophtjO123U1oXkks-qfleVbFLKfp12cfQmHhTcih3xZe74suH4qcPr-5iR9t498Dvm56A2IMfofY3_4krj1cXH7DgQH8BtDuPvg</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Behning, Charlotte</creator><creator>Bigerl, Alexander</creator><creator>Wright, Marvin N.</creator><creator>Sekula, Peggy</creator><creator>Berger, Moritz</creator><creator>Schmid, Matthias</creator><general>Wiley - VCH Verlag GmbH &amp; Co. KGaA</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9310-3804</orcidid></search><sort><creationdate>202409</creationdate><title>Random Survival Forests With Competing Events: A Subdistribution‐Based Imputation Approach</title><author>Behning, Charlotte ; Bigerl, Alexander ; Wright, Marvin N. ; Sekula, Peggy ; Berger, Moritz ; Schmid, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2930-d8893eb8734b2378a642287c25ec2bc031397ddd1e1ba24db7b3bef43fd227903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biometry - methods</topic><topic>competing events</topic><topic>Complex variables</topic><topic>Datasets</topic><topic>discrete time‐to‐event data</topic><topic>Epidemiology</topic><topic>Estimates</topic><topic>Humans</topic><topic>imputation</topic><topic>Independent variables</topic><topic>Kidney diseases</topic><topic>Models, Statistical</topic><topic>Proportional Hazards Models</topic><topic>random survival forest</topic><topic>subdistribution hazard</topic><topic>Survival</topic><topic>Survival Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behning, Charlotte</creatorcontrib><creatorcontrib>Bigerl, Alexander</creatorcontrib><creatorcontrib>Wright, Marvin N.</creatorcontrib><creatorcontrib>Sekula, Peggy</creatorcontrib><creatorcontrib>Berger, Moritz</creatorcontrib><creatorcontrib>Schmid, Matthias</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behning, Charlotte</au><au>Bigerl, Alexander</au><au>Wright, Marvin N.</au><au>Sekula, Peggy</au><au>Berger, Moritz</au><au>Schmid, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Survival Forests With Competing Events: A Subdistribution‐Based Imputation Approach</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2024-09</date><risdate>2024</risdate><volume>66</volume><issue>6</issue><spage>e202400014</spage><epage>n/a</epage><pages>e202400014-n/a</pages><issn>0323-3847</issn><issn>1521-4036</issn><eissn>1521-4036</eissn><abstract>ABSTRACT Random survival forests (RSF) can be applied to many time‐to‐event research questions and are particularly useful in situations where the relationship between the independent variables and the event of interest is rather complex. However, in many clinical settings, the occurrence of the event of interest is affected by competing events, which means that a patient can experience an outcome other than the event of interest. Neglecting the competing event (i.e., regarding competing events as censoring) will typically result in biased estimates of the cumulative incidence function (CIF). A popular approach for competing events is Fine and Gray's subdistribution hazard model, which directly estimates the CIF by fitting a single‐event model defined on a subdistribution timescale. Here, we integrate concepts from the subdistribution hazard modeling approach into the RSF. We develop several imputation strategies that use weights as in a discrete‐time subdistribution hazard model to impute censoring times in cases where a competing event is observed. Our simulations show that the CIF is well estimated if the imputation already takes place outside the forest on the overall dataset. Especially in settings with a low rate of the event of interest or a high censoring rate, competing events must not be neglected, that is, treated as censoring. When applied to a real‐world epidemiological dataset on chronic kidney disease, the imputation approach resulted in highly plausible predictor–response relationships and CIF estimates of renal events.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH &amp; Co. KGaA</pub><pmid>39162087</pmid><doi>10.1002/bimj.202400014</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9310-3804</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0323-3847
ispartof Biometrical journal, 2024-09, Vol.66 (6), p.e202400014-n/a
issn 0323-3847
1521-4036
1521-4036
language eng
recordid cdi_proquest_miscellaneous_3094823998
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biometry - methods
competing events
Complex variables
Datasets
discrete time‐to‐event data
Epidemiology
Estimates
Humans
imputation
Independent variables
Kidney diseases
Models, Statistical
Proportional Hazards Models
random survival forest
subdistribution hazard
Survival
Survival Analysis
title Random Survival Forests With Competing Events: A Subdistribution‐Based Imputation Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Survival%20Forests%20With%20Competing%20Events:%20A%C2%A0Subdistribution%E2%80%90Based%20Imputation%20Approach&rft.jtitle=Biometrical%20journal&rft.au=Behning,%20Charlotte&rft.date=2024-09&rft.volume=66&rft.issue=6&rft.spage=e202400014&rft.epage=n/a&rft.pages=e202400014-n/a&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.202400014&rft_dat=%3Cproquest_cross%3E3099967171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099967171&rft_id=info:pmid/39162087&rfr_iscdi=true