Spin cones in random-field XY models
We determine the arrangement of spins in the ground state of the XY model with quenched, random fields, on a fully connected graph. Two types of disordered fields are considered, namely, randomly oriented magnetic fields and randomly oriented crystal fields. Orientations are chosen from a uniformly...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2024-07, Vol.110 (1-1), p.014141 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1-1 |
container_start_page | 014141 |
container_title | Physical review. E |
container_volume | 110 |
creator | Pereira, Rajiv G Janardhanan, Ananya Barma, Mustansir |
description | We determine the arrangement of spins in the ground state of the XY model with quenched, random fields, on a fully connected graph. Two types of disordered fields are considered, namely, randomly oriented magnetic fields and randomly oriented crystal fields. Orientations are chosen from a uniformly isotropic distribution, but disorder fluctuations in each realization of a finite system lead to a breaking of rotational symmetry. The result is an interesting pattern of spin orientations found by solving a system of coupled, nonlinear equations within perturbation theory and also by exact numerical continuation. All spins lie within a cone for small enough ratio of field to coupling strength, with an interesting distribution of spin orientations, with peaks at the cone edges. The orientation of the cone depends strongly on the realization of disorder, but the opening angle does not. In the case of random magnetic fields, the cone angle widens as the ratio increases till a critical value at which there is a first-order phase transition and the cone disappears. With random crystal fields, there is no phase transition and the cone angle approaches 180^{∘} for large values of the ratio. At finite low temperatures, Monte Carlo simulations show that the formation of a cone and its subsequent alignment along the equilibrium direction occur on two different timescales. |
doi_str_mv | 10.1103/PhysRevE.110.014141 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3094820968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094820968</sourcerecordid><originalsourceid>FETCH-LOGICAL-p141t-63c403b4883443903016cefdc60f683a58a6cb4d55b5e85efb036834a30fdde23</originalsourceid><addsrcrecordid>eNpNj1tLAzEQhYMottT-AkH2wQdftk52km3yKKVeoKB4AX1asskEV_bmpiv03xuxgszD-WaYOYdh7JTDgnPAy4f3XXikr_VPtwAuYh2waSaWkAJIPPzHEzYP4QMAeA56ybNjNkEdWWk9ZedPfdUmtmspJBEG07quSX1FtUte35Kmc1SHE3bkTR1ovtcZe7leP69u0839zd3qapP2MX6b5mgFYCmUQiFQA8ZES97ZHHyu0EhlclsKJ2UpSUnyJWCcC4PgnaMMZ-zi17cfus-RwrZoqmCprk1L3RgKBC1UBjoezdjZfnUsG3JFP1SNGXbF32f4DV4JT-U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094820968</pqid></control><display><type>article</type><title>Spin cones in random-field XY models</title><source>American Physical Society Journals</source><creator>Pereira, Rajiv G ; Janardhanan, Ananya ; Barma, Mustansir</creator><creatorcontrib>Pereira, Rajiv G ; Janardhanan, Ananya ; Barma, Mustansir</creatorcontrib><description>We determine the arrangement of spins in the ground state of the XY model with quenched, random fields, on a fully connected graph. Two types of disordered fields are considered, namely, randomly oriented magnetic fields and randomly oriented crystal fields. Orientations are chosen from a uniformly isotropic distribution, but disorder fluctuations in each realization of a finite system lead to a breaking of rotational symmetry. The result is an interesting pattern of spin orientations found by solving a system of coupled, nonlinear equations within perturbation theory and also by exact numerical continuation. All spins lie within a cone for small enough ratio of field to coupling strength, with an interesting distribution of spin orientations, with peaks at the cone edges. The orientation of the cone depends strongly on the realization of disorder, but the opening angle does not. In the case of random magnetic fields, the cone angle widens as the ratio increases till a critical value at which there is a first-order phase transition and the cone disappears. With random crystal fields, there is no phase transition and the cone angle approaches 180^{∘} for large values of the ratio. At finite low temperatures, Monte Carlo simulations show that the formation of a cone and its subsequent alignment along the equilibrium direction occur on two different timescales.</description><identifier>ISSN: 2470-0053</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.110.014141</identifier><identifier>PMID: 39160899</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2024-07, Vol.110 (1-1), p.014141</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39160899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pereira, Rajiv G</creatorcontrib><creatorcontrib>Janardhanan, Ananya</creatorcontrib><creatorcontrib>Barma, Mustansir</creatorcontrib><title>Spin cones in random-field XY models</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>We determine the arrangement of spins in the ground state of the XY model with quenched, random fields, on a fully connected graph. Two types of disordered fields are considered, namely, randomly oriented magnetic fields and randomly oriented crystal fields. Orientations are chosen from a uniformly isotropic distribution, but disorder fluctuations in each realization of a finite system lead to a breaking of rotational symmetry. The result is an interesting pattern of spin orientations found by solving a system of coupled, nonlinear equations within perturbation theory and also by exact numerical continuation. All spins lie within a cone for small enough ratio of field to coupling strength, with an interesting distribution of spin orientations, with peaks at the cone edges. The orientation of the cone depends strongly on the realization of disorder, but the opening angle does not. In the case of random magnetic fields, the cone angle widens as the ratio increases till a critical value at which there is a first-order phase transition and the cone disappears. With random crystal fields, there is no phase transition and the cone angle approaches 180^{∘} for large values of the ratio. At finite low temperatures, Monte Carlo simulations show that the formation of a cone and its subsequent alignment along the equilibrium direction occur on two different timescales.</description><issn>2470-0053</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNj1tLAzEQhYMottT-AkH2wQdftk52km3yKKVeoKB4AX1asskEV_bmpiv03xuxgszD-WaYOYdh7JTDgnPAy4f3XXikr_VPtwAuYh2waSaWkAJIPPzHEzYP4QMAeA56ybNjNkEdWWk9ZedPfdUmtmspJBEG07quSX1FtUte35Kmc1SHE3bkTR1ovtcZe7leP69u0839zd3qapP2MX6b5mgFYCmUQiFQA8ZES97ZHHyu0EhlclsKJ2UpSUnyJWCcC4PgnaMMZ-zi17cfus-RwrZoqmCprk1L3RgKBC1UBjoezdjZfnUsG3JFP1SNGXbF32f4DV4JT-U</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Pereira, Rajiv G</creator><creator>Janardhanan, Ananya</creator><creator>Barma, Mustansir</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>202407</creationdate><title>Spin cones in random-field XY models</title><author>Pereira, Rajiv G ; Janardhanan, Ananya ; Barma, Mustansir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p141t-63c403b4883443903016cefdc60f683a58a6cb4d55b5e85efb036834a30fdde23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pereira, Rajiv G</creatorcontrib><creatorcontrib>Janardhanan, Ananya</creatorcontrib><creatorcontrib>Barma, Mustansir</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pereira, Rajiv G</au><au>Janardhanan, Ananya</au><au>Barma, Mustansir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin cones in random-field XY models</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2024-07</date><risdate>2024</risdate><volume>110</volume><issue>1-1</issue><spage>014141</spage><pages>014141-</pages><issn>2470-0053</issn><eissn>2470-0053</eissn><abstract>We determine the arrangement of spins in the ground state of the XY model with quenched, random fields, on a fully connected graph. Two types of disordered fields are considered, namely, randomly oriented magnetic fields and randomly oriented crystal fields. Orientations are chosen from a uniformly isotropic distribution, but disorder fluctuations in each realization of a finite system lead to a breaking of rotational symmetry. The result is an interesting pattern of spin orientations found by solving a system of coupled, nonlinear equations within perturbation theory and also by exact numerical continuation. All spins lie within a cone for small enough ratio of field to coupling strength, with an interesting distribution of spin orientations, with peaks at the cone edges. The orientation of the cone depends strongly on the realization of disorder, but the opening angle does not. In the case of random magnetic fields, the cone angle widens as the ratio increases till a critical value at which there is a first-order phase transition and the cone disappears. With random crystal fields, there is no phase transition and the cone angle approaches 180^{∘} for large values of the ratio. At finite low temperatures, Monte Carlo simulations show that the formation of a cone and its subsequent alignment along the equilibrium direction occur on two different timescales.</abstract><cop>United States</cop><pmid>39160899</pmid><doi>10.1103/PhysRevE.110.014141</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0053 |
ispartof | Physical review. E, 2024-07, Vol.110 (1-1), p.014141 |
issn | 2470-0053 2470-0053 |
language | eng |
recordid | cdi_proquest_miscellaneous_3094820968 |
source | American Physical Society Journals |
title | Spin cones in random-field XY models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A04%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%20cones%20in%20random-field%20XY%20models&rft.jtitle=Physical%20review.%20E&rft.au=Pereira,%20Rajiv%20G&rft.date=2024-07&rft.volume=110&rft.issue=1-1&rft.spage=014141&rft.pages=014141-&rft.issn=2470-0053&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.110.014141&rft_dat=%3Cproquest_pubme%3E3094820968%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3094820968&rft_id=info:pmid/39160899&rfr_iscdi=true |