Enhancing neuro-oncology care through equity-driven applications of artificial intelligence

The disease course and clinical outcome for brain tumor patients depend not only on the molecular and histological features of the tumor but also on the patient's demographics and social determinants of health. While current investigations in neuro-oncology have broadly utilized artificial inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuro-oncology (Charlottesville, Va.) Va.), 2024-11, Vol.26 (11), p.1951-1963
Hauptverfasser: Mehari, Mulki, Sibih, Youssef, Dada, Abraham, Chang, Susan M, Wen, Patrick Y, Molinaro, Annette M, Chukwueke, Ugonma N, Budhu, Joshua A, Jackson, Sadhana, McFaline-Figueroa, J Ricardo, Porter, Alyx, Hervey-Jumper, Shawn L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1963
container_issue 11
container_start_page 1951
container_title Neuro-oncology (Charlottesville, Va.)
container_volume 26
creator Mehari, Mulki
Sibih, Youssef
Dada, Abraham
Chang, Susan M
Wen, Patrick Y
Molinaro, Annette M
Chukwueke, Ugonma N
Budhu, Joshua A
Jackson, Sadhana
McFaline-Figueroa, J Ricardo
Porter, Alyx
Hervey-Jumper, Shawn L
description The disease course and clinical outcome for brain tumor patients depend not only on the molecular and histological features of the tumor but also on the patient's demographics and social determinants of health. While current investigations in neuro-oncology have broadly utilized artificial intelligence (AI) to enrich tumor diagnosis and more accurately predict treatment response, postoperative complications, and survival, equity-driven applications of AI have been limited. However, AI applications to advance health equity in the broader medical field have the potential to serve as practical blueprints to address known disparities in neuro-oncologic care. In this consensus review, we will describe current applications of AI in neuro-oncology, postulate viable AI solutions for the most pressing inequities in neuro-oncology based on broader literature, propose a framework for the effective integration of equity into AI-based neuro-oncology research, and close with the limitations of AI.
doi_str_mv 10.1093/neuonc/noae127
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3094820269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094820269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-79c312dd94d9afecb1bd2bbe751a08f4154af889b8fa1bb7c8b75273f2c425c13</originalsourceid><addsrcrecordid>eNo9kD1PwzAQQC0EoqWwMqKMLGl9dpzYI6rKh1SJBSaGyHbs1Ci1WztB6r8n0MJ0N7x7Oj2EbgHPAQu68GYIXi98kAZIdYamwAjNGS_L89-d5JxBNUFXKX1iTICVcIkmVAAThLMp-lj5jfTa-TYbVTHkoy10oT1kWkaT9ZsYhnaTmf3g-kPeRPdlfCZ3u85p2bvgUxZsJmPvrNNOdpnzvek61xqvzTW6sLJL5uY0Z-j9cfW2fM7Xr08vy4d1roHjPq-EpkCaRhSNkNZoBaohSpmKgcTcFsAKaTkXilsJSlWaq4qRilqiC8I00Bm6P3p3MewHk_p665Ie35DehCHVFIuCE0xKMaLzI6pjSCkaW--i28p4qAHXP0HrY9D6FHQ8uDu5B7U1zT_-V5B-A5LLdo4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094820269</pqid></control><display><type>article</type><title>Enhancing neuro-oncology care through equity-driven applications of artificial intelligence</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><creator>Mehari, Mulki ; Sibih, Youssef ; Dada, Abraham ; Chang, Susan M ; Wen, Patrick Y ; Molinaro, Annette M ; Chukwueke, Ugonma N ; Budhu, Joshua A ; Jackson, Sadhana ; McFaline-Figueroa, J Ricardo ; Porter, Alyx ; Hervey-Jumper, Shawn L</creator><creatorcontrib>Mehari, Mulki ; Sibih, Youssef ; Dada, Abraham ; Chang, Susan M ; Wen, Patrick Y ; Molinaro, Annette M ; Chukwueke, Ugonma N ; Budhu, Joshua A ; Jackson, Sadhana ; McFaline-Figueroa, J Ricardo ; Porter, Alyx ; Hervey-Jumper, Shawn L</creatorcontrib><description>The disease course and clinical outcome for brain tumor patients depend not only on the molecular and histological features of the tumor but also on the patient's demographics and social determinants of health. While current investigations in neuro-oncology have broadly utilized artificial intelligence (AI) to enrich tumor diagnosis and more accurately predict treatment response, postoperative complications, and survival, equity-driven applications of AI have been limited. However, AI applications to advance health equity in the broader medical field have the potential to serve as practical blueprints to address known disparities in neuro-oncologic care. In this consensus review, we will describe current applications of AI in neuro-oncology, postulate viable AI solutions for the most pressing inequities in neuro-oncology based on broader literature, propose a framework for the effective integration of equity into AI-based neuro-oncology research, and close with the limitations of AI.</description><identifier>ISSN: 1522-8517</identifier><identifier>ISSN: 1523-5866</identifier><identifier>EISSN: 1523-5866</identifier><identifier>DOI: 10.1093/neuonc/noae127</identifier><identifier>PMID: 39159285</identifier><language>eng</language><publisher>England</publisher><subject>Artificial Intelligence ; Brain Neoplasms - therapy ; Health Equity ; Healthcare Disparities ; Humans ; Medical Oncology - methods ; Medical Oncology - organization &amp; administration</subject><ispartof>Neuro-oncology (Charlottesville, Va.), 2024-11, Vol.26 (11), p.1951-1963</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c180t-79c312dd94d9afecb1bd2bbe751a08f4154af889b8fa1bb7c8b75273f2c425c13</cites><orcidid>0000-0003-4699-260X ; 0000-0001-6700-5621 ; 0000-0003-0666-1320 ; 0000-0002-8923-9784 ; 0000-0002-9854-7404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39159285$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mehari, Mulki</creatorcontrib><creatorcontrib>Sibih, Youssef</creatorcontrib><creatorcontrib>Dada, Abraham</creatorcontrib><creatorcontrib>Chang, Susan M</creatorcontrib><creatorcontrib>Wen, Patrick Y</creatorcontrib><creatorcontrib>Molinaro, Annette M</creatorcontrib><creatorcontrib>Chukwueke, Ugonma N</creatorcontrib><creatorcontrib>Budhu, Joshua A</creatorcontrib><creatorcontrib>Jackson, Sadhana</creatorcontrib><creatorcontrib>McFaline-Figueroa, J Ricardo</creatorcontrib><creatorcontrib>Porter, Alyx</creatorcontrib><creatorcontrib>Hervey-Jumper, Shawn L</creatorcontrib><title>Enhancing neuro-oncology care through equity-driven applications of artificial intelligence</title><title>Neuro-oncology (Charlottesville, Va.)</title><addtitle>Neuro Oncol</addtitle><description>The disease course and clinical outcome for brain tumor patients depend not only on the molecular and histological features of the tumor but also on the patient's demographics and social determinants of health. While current investigations in neuro-oncology have broadly utilized artificial intelligence (AI) to enrich tumor diagnosis and more accurately predict treatment response, postoperative complications, and survival, equity-driven applications of AI have been limited. However, AI applications to advance health equity in the broader medical field have the potential to serve as practical blueprints to address known disparities in neuro-oncologic care. In this consensus review, we will describe current applications of AI in neuro-oncology, postulate viable AI solutions for the most pressing inequities in neuro-oncology based on broader literature, propose a framework for the effective integration of equity into AI-based neuro-oncology research, and close with the limitations of AI.</description><subject>Artificial Intelligence</subject><subject>Brain Neoplasms - therapy</subject><subject>Health Equity</subject><subject>Healthcare Disparities</subject><subject>Humans</subject><subject>Medical Oncology - methods</subject><subject>Medical Oncology - organization &amp; administration</subject><issn>1522-8517</issn><issn>1523-5866</issn><issn>1523-5866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kD1PwzAQQC0EoqWwMqKMLGl9dpzYI6rKh1SJBSaGyHbs1Ci1WztB6r8n0MJ0N7x7Oj2EbgHPAQu68GYIXi98kAZIdYamwAjNGS_L89-d5JxBNUFXKX1iTICVcIkmVAAThLMp-lj5jfTa-TYbVTHkoy10oT1kWkaT9ZsYhnaTmf3g-kPeRPdlfCZ3u85p2bvgUxZsJmPvrNNOdpnzvek61xqvzTW6sLJL5uY0Z-j9cfW2fM7Xr08vy4d1roHjPq-EpkCaRhSNkNZoBaohSpmKgcTcFsAKaTkXilsJSlWaq4qRilqiC8I00Bm6P3p3MewHk_p665Ie35DehCHVFIuCE0xKMaLzI6pjSCkaW--i28p4qAHXP0HrY9D6FHQ8uDu5B7U1zT_-V5B-A5LLdo4</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Mehari, Mulki</creator><creator>Sibih, Youssef</creator><creator>Dada, Abraham</creator><creator>Chang, Susan M</creator><creator>Wen, Patrick Y</creator><creator>Molinaro, Annette M</creator><creator>Chukwueke, Ugonma N</creator><creator>Budhu, Joshua A</creator><creator>Jackson, Sadhana</creator><creator>McFaline-Figueroa, J Ricardo</creator><creator>Porter, Alyx</creator><creator>Hervey-Jumper, Shawn L</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4699-260X</orcidid><orcidid>https://orcid.org/0000-0001-6700-5621</orcidid><orcidid>https://orcid.org/0000-0003-0666-1320</orcidid><orcidid>https://orcid.org/0000-0002-8923-9784</orcidid><orcidid>https://orcid.org/0000-0002-9854-7404</orcidid></search><sort><creationdate>20241104</creationdate><title>Enhancing neuro-oncology care through equity-driven applications of artificial intelligence</title><author>Mehari, Mulki ; Sibih, Youssef ; Dada, Abraham ; Chang, Susan M ; Wen, Patrick Y ; Molinaro, Annette M ; Chukwueke, Ugonma N ; Budhu, Joshua A ; Jackson, Sadhana ; McFaline-Figueroa, J Ricardo ; Porter, Alyx ; Hervey-Jumper, Shawn L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-79c312dd94d9afecb1bd2bbe751a08f4154af889b8fa1bb7c8b75273f2c425c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Brain Neoplasms - therapy</topic><topic>Health Equity</topic><topic>Healthcare Disparities</topic><topic>Humans</topic><topic>Medical Oncology - methods</topic><topic>Medical Oncology - organization &amp; administration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehari, Mulki</creatorcontrib><creatorcontrib>Sibih, Youssef</creatorcontrib><creatorcontrib>Dada, Abraham</creatorcontrib><creatorcontrib>Chang, Susan M</creatorcontrib><creatorcontrib>Wen, Patrick Y</creatorcontrib><creatorcontrib>Molinaro, Annette M</creatorcontrib><creatorcontrib>Chukwueke, Ugonma N</creatorcontrib><creatorcontrib>Budhu, Joshua A</creatorcontrib><creatorcontrib>Jackson, Sadhana</creatorcontrib><creatorcontrib>McFaline-Figueroa, J Ricardo</creatorcontrib><creatorcontrib>Porter, Alyx</creatorcontrib><creatorcontrib>Hervey-Jumper, Shawn L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neuro-oncology (Charlottesville, Va.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehari, Mulki</au><au>Sibih, Youssef</au><au>Dada, Abraham</au><au>Chang, Susan M</au><au>Wen, Patrick Y</au><au>Molinaro, Annette M</au><au>Chukwueke, Ugonma N</au><au>Budhu, Joshua A</au><au>Jackson, Sadhana</au><au>McFaline-Figueroa, J Ricardo</au><au>Porter, Alyx</au><au>Hervey-Jumper, Shawn L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing neuro-oncology care through equity-driven applications of artificial intelligence</atitle><jtitle>Neuro-oncology (Charlottesville, Va.)</jtitle><addtitle>Neuro Oncol</addtitle><date>2024-11-04</date><risdate>2024</risdate><volume>26</volume><issue>11</issue><spage>1951</spage><epage>1963</epage><pages>1951-1963</pages><issn>1522-8517</issn><issn>1523-5866</issn><eissn>1523-5866</eissn><abstract>The disease course and clinical outcome for brain tumor patients depend not only on the molecular and histological features of the tumor but also on the patient's demographics and social determinants of health. While current investigations in neuro-oncology have broadly utilized artificial intelligence (AI) to enrich tumor diagnosis and more accurately predict treatment response, postoperative complications, and survival, equity-driven applications of AI have been limited. However, AI applications to advance health equity in the broader medical field have the potential to serve as practical blueprints to address known disparities in neuro-oncologic care. In this consensus review, we will describe current applications of AI in neuro-oncology, postulate viable AI solutions for the most pressing inequities in neuro-oncology based on broader literature, propose a framework for the effective integration of equity into AI-based neuro-oncology research, and close with the limitations of AI.</abstract><cop>England</cop><pmid>39159285</pmid><doi>10.1093/neuonc/noae127</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4699-260X</orcidid><orcidid>https://orcid.org/0000-0001-6700-5621</orcidid><orcidid>https://orcid.org/0000-0003-0666-1320</orcidid><orcidid>https://orcid.org/0000-0002-8923-9784</orcidid><orcidid>https://orcid.org/0000-0002-9854-7404</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1522-8517
ispartof Neuro-oncology (Charlottesville, Va.), 2024-11, Vol.26 (11), p.1951-1963
issn 1522-8517
1523-5866
1523-5866
language eng
recordid cdi_proquest_miscellaneous_3094820269
source Oxford University Press Journals All Titles (1996-Current); MEDLINE
subjects Artificial Intelligence
Brain Neoplasms - therapy
Health Equity
Healthcare Disparities
Humans
Medical Oncology - methods
Medical Oncology - organization & administration
title Enhancing neuro-oncology care through equity-driven applications of artificial intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20neuro-oncology%20care%20through%20equity-driven%20applications%20of%20artificial%20intelligence&rft.jtitle=Neuro-oncology%20(Charlottesville,%20Va.)&rft.au=Mehari,%20Mulki&rft.date=2024-11-04&rft.volume=26&rft.issue=11&rft.spage=1951&rft.epage=1963&rft.pages=1951-1963&rft.issn=1522-8517&rft.eissn=1523-5866&rft_id=info:doi/10.1093/neuonc/noae127&rft_dat=%3Cproquest_cross%3E3094820269%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3094820269&rft_id=info:pmid/39159285&rfr_iscdi=true