Amino-functionalization enhanced CO2 reduction reaction in pure water
The electrochemical reduction of carbon dioxide (CO2RR) to carbon monoxide represents a cost-effective pathway towards realizing carbon neutrality. To suppress the hydrogen evolution reaction (HER), the presence of alkali cations is critical, which can however lead to precipitate formation on the el...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2024-09, Vol.16 (35), p.16510-16516 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16516 |
---|---|
container_issue | 35 |
container_start_page | 16510 |
container_title | Nanoscale |
container_volume | 16 |
creator | Chen, Junfeng Niu, Wenzhe Xue, Liangyao Sun, Kai Yang, Xiao Zhang, Xinyue Li, Weihang Huang, Shuanglong Shi, Wenjuan Zhang, Bo |
description | The electrochemical reduction of carbon dioxide (CO2RR) to carbon monoxide represents a cost-effective pathway towards realizing carbon neutrality. To suppress the hydrogen evolution reaction (HER), the presence of alkali cations is critical, which can however lead to precipitate formation on the electrode, adversely impacting the device stability. Employing pure water as the electrolyte in zero-gap CO2 electrolyzers can address this challenge, albeit at the cost of diminished catalyst performance due to the absence of alkali cations. In this study, we introduce a novel approach by implementing amino modifications on the catalyst surface to mimic the function of alkali metal cations, while simultaneously working in pure water. This modification enhances the adsorption of carbon dioxide and protons, thereby facilitating the CO2RR while concurrently suppressing the HER. Utilizing this strategy in a zero-gap CO2 electrolyzer with pure water as the anolyte resulted in an impressive carbon monoxide faradaic efficiency (FECO) of 95.5% at a current density of 250 mA cm−2, while maintaining stability for over 180 hours without any maintenance. |
doi_str_mv | 10.1039/d4nr01416b |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3094474475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103131598</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-beef3a42549109b3613b89e7e7983314db1b93e4a7b79f35d0e3385274715af53</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFYv_oKAFy_Rncx-dI8l1CoUetFz2U0mmJJuYjaL4K93a8WDMDAPvA8zzDB2C_wBOJrHWviRgwDlztis4ILniLo4_2MlLtlVCHvOlUGFM7ZaHlrf50301dT23nbtlz1CRv7d-orqrNwW2Uh1_MkT2RO0PhviSNmnnWi8ZheN7QLd_PY5e3tavZbP-Wa7fimXm3wAoabcETVoRSGFAW4cKkC3MKRJmwUiiNqBM0jCaqdNg7LmhLiQhRYapG0kztn9ae4w9h-RwrQ7tKGirrOe-hh2yI0QOtVRvfun7vs4pgOTlV4FCDIt_QYOLVmn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103131598</pqid></control><display><type>article</type><title>Amino-functionalization enhanced CO2 reduction reaction in pure water</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Chen, Junfeng ; Niu, Wenzhe ; Xue, Liangyao ; Sun, Kai ; Yang, Xiao ; Zhang, Xinyue ; Li, Weihang ; Huang, Shuanglong ; Shi, Wenjuan ; Zhang, Bo</creator><creatorcontrib>Chen, Junfeng ; Niu, Wenzhe ; Xue, Liangyao ; Sun, Kai ; Yang, Xiao ; Zhang, Xinyue ; Li, Weihang ; Huang, Shuanglong ; Shi, Wenjuan ; Zhang, Bo</creatorcontrib><description>The electrochemical reduction of carbon dioxide (CO2RR) to carbon monoxide represents a cost-effective pathway towards realizing carbon neutrality. To suppress the hydrogen evolution reaction (HER), the presence of alkali cations is critical, which can however lead to precipitate formation on the electrode, adversely impacting the device stability. Employing pure water as the electrolyte in zero-gap CO2 electrolyzers can address this challenge, albeit at the cost of diminished catalyst performance due to the absence of alkali cations. In this study, we introduce a novel approach by implementing amino modifications on the catalyst surface to mimic the function of alkali metal cations, while simultaneously working in pure water. This modification enhances the adsorption of carbon dioxide and protons, thereby facilitating the CO2RR while concurrently suppressing the HER. Utilizing this strategy in a zero-gap CO2 electrolyzer with pure water as the anolyte resulted in an impressive carbon monoxide faradaic efficiency (FECO) of 95.5% at a current density of 250 mA cm−2, while maintaining stability for over 180 hours without any maintenance.</description><identifier>ISSN: 2040-3364</identifier><identifier>ISSN: 2040-3372</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d4nr01416b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alkali metals ; Anolytes ; Carbon dioxide ; Carbon monoxide ; Catalysts ; Cations ; Chemical reduction ; Hydrogen evolution reactions ; Stability</subject><ispartof>Nanoscale, 2024-09, Vol.16 (35), p.16510-16516</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Junfeng</creatorcontrib><creatorcontrib>Niu, Wenzhe</creatorcontrib><creatorcontrib>Xue, Liangyao</creatorcontrib><creatorcontrib>Sun, Kai</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Zhang, Xinyue</creatorcontrib><creatorcontrib>Li, Weihang</creatorcontrib><creatorcontrib>Huang, Shuanglong</creatorcontrib><creatorcontrib>Shi, Wenjuan</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><title>Amino-functionalization enhanced CO2 reduction reaction in pure water</title><title>Nanoscale</title><description>The electrochemical reduction of carbon dioxide (CO2RR) to carbon monoxide represents a cost-effective pathway towards realizing carbon neutrality. To suppress the hydrogen evolution reaction (HER), the presence of alkali cations is critical, which can however lead to precipitate formation on the electrode, adversely impacting the device stability. Employing pure water as the electrolyte in zero-gap CO2 electrolyzers can address this challenge, albeit at the cost of diminished catalyst performance due to the absence of alkali cations. In this study, we introduce a novel approach by implementing amino modifications on the catalyst surface to mimic the function of alkali metal cations, while simultaneously working in pure water. This modification enhances the adsorption of carbon dioxide and protons, thereby facilitating the CO2RR while concurrently suppressing the HER. Utilizing this strategy in a zero-gap CO2 electrolyzer with pure water as the anolyte resulted in an impressive carbon monoxide faradaic efficiency (FECO) of 95.5% at a current density of 250 mA cm−2, while maintaining stability for over 180 hours without any maintenance.</description><subject>Alkali metals</subject><subject>Anolytes</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>Cations</subject><subject>Chemical reduction</subject><subject>Hydrogen evolution reactions</subject><subject>Stability</subject><issn>2040-3364</issn><issn>2040-3372</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRsFYv_oKAFy_Rncx-dI8l1CoUetFz2U0mmJJuYjaL4K93a8WDMDAPvA8zzDB2C_wBOJrHWviRgwDlztis4ILniLo4_2MlLtlVCHvOlUGFM7ZaHlrf50301dT23nbtlz1CRv7d-orqrNwW2Uh1_MkT2RO0PhviSNmnnWi8ZheN7QLd_PY5e3tavZbP-Wa7fimXm3wAoabcETVoRSGFAW4cKkC3MKRJmwUiiNqBM0jCaqdNg7LmhLiQhRYapG0kztn9ae4w9h-RwrQ7tKGirrOe-hh2yI0QOtVRvfun7vs4pgOTlV4FCDIt_QYOLVmn</recordid><startdate>20240912</startdate><enddate>20240912</enddate><creator>Chen, Junfeng</creator><creator>Niu, Wenzhe</creator><creator>Xue, Liangyao</creator><creator>Sun, Kai</creator><creator>Yang, Xiao</creator><creator>Zhang, Xinyue</creator><creator>Li, Weihang</creator><creator>Huang, Shuanglong</creator><creator>Shi, Wenjuan</creator><creator>Zhang, Bo</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20240912</creationdate><title>Amino-functionalization enhanced CO2 reduction reaction in pure water</title><author>Chen, Junfeng ; Niu, Wenzhe ; Xue, Liangyao ; Sun, Kai ; Yang, Xiao ; Zhang, Xinyue ; Li, Weihang ; Huang, Shuanglong ; Shi, Wenjuan ; Zhang, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-beef3a42549109b3613b89e7e7983314db1b93e4a7b79f35d0e3385274715af53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alkali metals</topic><topic>Anolytes</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>Cations</topic><topic>Chemical reduction</topic><topic>Hydrogen evolution reactions</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Junfeng</creatorcontrib><creatorcontrib>Niu, Wenzhe</creatorcontrib><creatorcontrib>Xue, Liangyao</creatorcontrib><creatorcontrib>Sun, Kai</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Zhang, Xinyue</creatorcontrib><creatorcontrib>Li, Weihang</creatorcontrib><creatorcontrib>Huang, Shuanglong</creatorcontrib><creatorcontrib>Shi, Wenjuan</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Junfeng</au><au>Niu, Wenzhe</au><au>Xue, Liangyao</au><au>Sun, Kai</au><au>Yang, Xiao</au><au>Zhang, Xinyue</au><au>Li, Weihang</au><au>Huang, Shuanglong</au><au>Shi, Wenjuan</au><au>Zhang, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amino-functionalization enhanced CO2 reduction reaction in pure water</atitle><jtitle>Nanoscale</jtitle><date>2024-09-12</date><risdate>2024</risdate><volume>16</volume><issue>35</issue><spage>16510</spage><epage>16516</epage><pages>16510-16516</pages><issn>2040-3364</issn><issn>2040-3372</issn><eissn>2040-3372</eissn><abstract>The electrochemical reduction of carbon dioxide (CO2RR) to carbon monoxide represents a cost-effective pathway towards realizing carbon neutrality. To suppress the hydrogen evolution reaction (HER), the presence of alkali cations is critical, which can however lead to precipitate formation on the electrode, adversely impacting the device stability. Employing pure water as the electrolyte in zero-gap CO2 electrolyzers can address this challenge, albeit at the cost of diminished catalyst performance due to the absence of alkali cations. In this study, we introduce a novel approach by implementing amino modifications on the catalyst surface to mimic the function of alkali metal cations, while simultaneously working in pure water. This modification enhances the adsorption of carbon dioxide and protons, thereby facilitating the CO2RR while concurrently suppressing the HER. Utilizing this strategy in a zero-gap CO2 electrolyzer with pure water as the anolyte resulted in an impressive carbon monoxide faradaic efficiency (FECO) of 95.5% at a current density of 250 mA cm−2, while maintaining stability for over 180 hours without any maintenance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4nr01416b</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2024-09, Vol.16 (35), p.16510-16516 |
issn | 2040-3364 2040-3372 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_3094474475 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Alkali metals Anolytes Carbon dioxide Carbon monoxide Catalysts Cations Chemical reduction Hydrogen evolution reactions Stability |
title | Amino-functionalization enhanced CO2 reduction reaction in pure water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amino-functionalization%20enhanced%20CO2%20reduction%20reaction%20in%20pure%20water&rft.jtitle=Nanoscale&rft.au=Chen,%20Junfeng&rft.date=2024-09-12&rft.volume=16&rft.issue=35&rft.spage=16510&rft.epage=16516&rft.pages=16510-16516&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d4nr01416b&rft_dat=%3Cproquest%3E3103131598%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103131598&rft_id=info:pmid/&rfr_iscdi=true |