Amino-functionalization enhanced CO2 reduction reaction in pure water

The electrochemical reduction of carbon dioxide (CO2RR) to carbon monoxide represents a cost-effective pathway towards realizing carbon neutrality. To suppress the hydrogen evolution reaction (HER), the presence of alkali cations is critical, which can however lead to precipitate formation on the el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2024-09, Vol.16 (35), p.16510-16516
Hauptverfasser: Chen, Junfeng, Niu, Wenzhe, Xue, Liangyao, Sun, Kai, Yang, Xiao, Zhang, Xinyue, Li, Weihang, Huang, Shuanglong, Shi, Wenjuan, Zhang, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16516
container_issue 35
container_start_page 16510
container_title Nanoscale
container_volume 16
creator Chen, Junfeng
Niu, Wenzhe
Xue, Liangyao
Sun, Kai
Yang, Xiao
Zhang, Xinyue
Li, Weihang
Huang, Shuanglong
Shi, Wenjuan
Zhang, Bo
description The electrochemical reduction of carbon dioxide (CO2RR) to carbon monoxide represents a cost-effective pathway towards realizing carbon neutrality. To suppress the hydrogen evolution reaction (HER), the presence of alkali cations is critical, which can however lead to precipitate formation on the electrode, adversely impacting the device stability. Employing pure water as the electrolyte in zero-gap CO2 electrolyzers can address this challenge, albeit at the cost of diminished catalyst performance due to the absence of alkali cations. In this study, we introduce a novel approach by implementing amino modifications on the catalyst surface to mimic the function of alkali metal cations, while simultaneously working in pure water. This modification enhances the adsorption of carbon dioxide and protons, thereby facilitating the CO2RR while concurrently suppressing the HER. Utilizing this strategy in a zero-gap CO2 electrolyzer with pure water as the anolyte resulted in an impressive carbon monoxide faradaic efficiency (FECO) of 95.5% at a current density of 250 mA cm−2, while maintaining stability for over 180 hours without any maintenance.
doi_str_mv 10.1039/d4nr01416b
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3094474475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103131598</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-beef3a42549109b3613b89e7e7983314db1b93e4a7b79f35d0e3385274715af53</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFYv_oKAFy_Rncx-dI8l1CoUetFz2U0mmJJuYjaL4K93a8WDMDAPvA8zzDB2C_wBOJrHWviRgwDlztis4ILniLo4_2MlLtlVCHvOlUGFM7ZaHlrf50301dT23nbtlz1CRv7d-orqrNwW2Uh1_MkT2RO0PhviSNmnnWi8ZheN7QLd_PY5e3tavZbP-Wa7fimXm3wAoabcETVoRSGFAW4cKkC3MKRJmwUiiNqBM0jCaqdNg7LmhLiQhRYapG0kztn9ae4w9h-RwrQ7tKGirrOe-hh2yI0QOtVRvfun7vs4pgOTlV4FCDIt_QYOLVmn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103131598</pqid></control><display><type>article</type><title>Amino-functionalization enhanced CO2 reduction reaction in pure water</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Chen, Junfeng ; Niu, Wenzhe ; Xue, Liangyao ; Sun, Kai ; Yang, Xiao ; Zhang, Xinyue ; Li, Weihang ; Huang, Shuanglong ; Shi, Wenjuan ; Zhang, Bo</creator><creatorcontrib>Chen, Junfeng ; Niu, Wenzhe ; Xue, Liangyao ; Sun, Kai ; Yang, Xiao ; Zhang, Xinyue ; Li, Weihang ; Huang, Shuanglong ; Shi, Wenjuan ; Zhang, Bo</creatorcontrib><description>The electrochemical reduction of carbon dioxide (CO2RR) to carbon monoxide represents a cost-effective pathway towards realizing carbon neutrality. To suppress the hydrogen evolution reaction (HER), the presence of alkali cations is critical, which can however lead to precipitate formation on the electrode, adversely impacting the device stability. Employing pure water as the electrolyte in zero-gap CO2 electrolyzers can address this challenge, albeit at the cost of diminished catalyst performance due to the absence of alkali cations. In this study, we introduce a novel approach by implementing amino modifications on the catalyst surface to mimic the function of alkali metal cations, while simultaneously working in pure water. This modification enhances the adsorption of carbon dioxide and protons, thereby facilitating the CO2RR while concurrently suppressing the HER. Utilizing this strategy in a zero-gap CO2 electrolyzer with pure water as the anolyte resulted in an impressive carbon monoxide faradaic efficiency (FECO) of 95.5% at a current density of 250 mA cm−2, while maintaining stability for over 180 hours without any maintenance.</description><identifier>ISSN: 2040-3364</identifier><identifier>ISSN: 2040-3372</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d4nr01416b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alkali metals ; Anolytes ; Carbon dioxide ; Carbon monoxide ; Catalysts ; Cations ; Chemical reduction ; Hydrogen evolution reactions ; Stability</subject><ispartof>Nanoscale, 2024-09, Vol.16 (35), p.16510-16516</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Junfeng</creatorcontrib><creatorcontrib>Niu, Wenzhe</creatorcontrib><creatorcontrib>Xue, Liangyao</creatorcontrib><creatorcontrib>Sun, Kai</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Zhang, Xinyue</creatorcontrib><creatorcontrib>Li, Weihang</creatorcontrib><creatorcontrib>Huang, Shuanglong</creatorcontrib><creatorcontrib>Shi, Wenjuan</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><title>Amino-functionalization enhanced CO2 reduction reaction in pure water</title><title>Nanoscale</title><description>The electrochemical reduction of carbon dioxide (CO2RR) to carbon monoxide represents a cost-effective pathway towards realizing carbon neutrality. To suppress the hydrogen evolution reaction (HER), the presence of alkali cations is critical, which can however lead to precipitate formation on the electrode, adversely impacting the device stability. Employing pure water as the electrolyte in zero-gap CO2 electrolyzers can address this challenge, albeit at the cost of diminished catalyst performance due to the absence of alkali cations. In this study, we introduce a novel approach by implementing amino modifications on the catalyst surface to mimic the function of alkali metal cations, while simultaneously working in pure water. This modification enhances the adsorption of carbon dioxide and protons, thereby facilitating the CO2RR while concurrently suppressing the HER. Utilizing this strategy in a zero-gap CO2 electrolyzer with pure water as the anolyte resulted in an impressive carbon monoxide faradaic efficiency (FECO) of 95.5% at a current density of 250 mA cm−2, while maintaining stability for over 180 hours without any maintenance.</description><subject>Alkali metals</subject><subject>Anolytes</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>Cations</subject><subject>Chemical reduction</subject><subject>Hydrogen evolution reactions</subject><subject>Stability</subject><issn>2040-3364</issn><issn>2040-3372</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRsFYv_oKAFy_Rncx-dI8l1CoUetFz2U0mmJJuYjaL4K93a8WDMDAPvA8zzDB2C_wBOJrHWviRgwDlztis4ILniLo4_2MlLtlVCHvOlUGFM7ZaHlrf50301dT23nbtlz1CRv7d-orqrNwW2Uh1_MkT2RO0PhviSNmnnWi8ZheN7QLd_PY5e3tavZbP-Wa7fimXm3wAoabcETVoRSGFAW4cKkC3MKRJmwUiiNqBM0jCaqdNg7LmhLiQhRYapG0kztn9ae4w9h-RwrQ7tKGirrOe-hh2yI0QOtVRvfun7vs4pgOTlV4FCDIt_QYOLVmn</recordid><startdate>20240912</startdate><enddate>20240912</enddate><creator>Chen, Junfeng</creator><creator>Niu, Wenzhe</creator><creator>Xue, Liangyao</creator><creator>Sun, Kai</creator><creator>Yang, Xiao</creator><creator>Zhang, Xinyue</creator><creator>Li, Weihang</creator><creator>Huang, Shuanglong</creator><creator>Shi, Wenjuan</creator><creator>Zhang, Bo</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20240912</creationdate><title>Amino-functionalization enhanced CO2 reduction reaction in pure water</title><author>Chen, Junfeng ; Niu, Wenzhe ; Xue, Liangyao ; Sun, Kai ; Yang, Xiao ; Zhang, Xinyue ; Li, Weihang ; Huang, Shuanglong ; Shi, Wenjuan ; Zhang, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-beef3a42549109b3613b89e7e7983314db1b93e4a7b79f35d0e3385274715af53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alkali metals</topic><topic>Anolytes</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>Cations</topic><topic>Chemical reduction</topic><topic>Hydrogen evolution reactions</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Junfeng</creatorcontrib><creatorcontrib>Niu, Wenzhe</creatorcontrib><creatorcontrib>Xue, Liangyao</creatorcontrib><creatorcontrib>Sun, Kai</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Zhang, Xinyue</creatorcontrib><creatorcontrib>Li, Weihang</creatorcontrib><creatorcontrib>Huang, Shuanglong</creatorcontrib><creatorcontrib>Shi, Wenjuan</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Junfeng</au><au>Niu, Wenzhe</au><au>Xue, Liangyao</au><au>Sun, Kai</au><au>Yang, Xiao</au><au>Zhang, Xinyue</au><au>Li, Weihang</au><au>Huang, Shuanglong</au><au>Shi, Wenjuan</au><au>Zhang, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amino-functionalization enhanced CO2 reduction reaction in pure water</atitle><jtitle>Nanoscale</jtitle><date>2024-09-12</date><risdate>2024</risdate><volume>16</volume><issue>35</issue><spage>16510</spage><epage>16516</epage><pages>16510-16516</pages><issn>2040-3364</issn><issn>2040-3372</issn><eissn>2040-3372</eissn><abstract>The electrochemical reduction of carbon dioxide (CO2RR) to carbon monoxide represents a cost-effective pathway towards realizing carbon neutrality. To suppress the hydrogen evolution reaction (HER), the presence of alkali cations is critical, which can however lead to precipitate formation on the electrode, adversely impacting the device stability. Employing pure water as the electrolyte in zero-gap CO2 electrolyzers can address this challenge, albeit at the cost of diminished catalyst performance due to the absence of alkali cations. In this study, we introduce a novel approach by implementing amino modifications on the catalyst surface to mimic the function of alkali metal cations, while simultaneously working in pure water. This modification enhances the adsorption of carbon dioxide and protons, thereby facilitating the CO2RR while concurrently suppressing the HER. Utilizing this strategy in a zero-gap CO2 electrolyzer with pure water as the anolyte resulted in an impressive carbon monoxide faradaic efficiency (FECO) of 95.5% at a current density of 250 mA cm−2, while maintaining stability for over 180 hours without any maintenance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4nr01416b</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2024-09, Vol.16 (35), p.16510-16516
issn 2040-3364
2040-3372
2040-3372
language eng
recordid cdi_proquest_miscellaneous_3094474475
source Royal Society Of Chemistry Journals 2008-
subjects Alkali metals
Anolytes
Carbon dioxide
Carbon monoxide
Catalysts
Cations
Chemical reduction
Hydrogen evolution reactions
Stability
title Amino-functionalization enhanced CO2 reduction reaction in pure water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amino-functionalization%20enhanced%20CO2%20reduction%20reaction%20in%20pure%20water&rft.jtitle=Nanoscale&rft.au=Chen,%20Junfeng&rft.date=2024-09-12&rft.volume=16&rft.issue=35&rft.spage=16510&rft.epage=16516&rft.pages=16510-16516&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d4nr01416b&rft_dat=%3Cproquest%3E3103131598%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103131598&rft_id=info:pmid/&rfr_iscdi=true