Non‐Medical Applications of Inorganic Medicines. A Switch Based on Mechanistic Knowledge
Metals have been used in medicine for centuries. However, it was not until much later that the effects of inorganic drugs could be rationalized from a mechanistic point of view. Today, thanks to the technologies available, this approach has been functionally developed and implemented. It has been fo...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2024-10, Vol.30 (60), p.e202402647-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 60 |
container_start_page | e202402647 |
container_title | Chemistry : a European journal |
container_volume | 30 |
creator | Cirri, Damiano Di Leo, Riccardo Chiaverini, Lorenzo Tolbatov, Iogann Marrone, Alessandro Messori, Luigi Pratesi, Alessandro La Mendola, Diego Marzo, Tiziano |
description | Metals have been used in medicine for centuries. However, it was not until much later that the effects of inorganic drugs could be rationalized from a mechanistic point of view. Today, thanks to the technologies available, this approach has been functionally developed and implemented. It has been found that there is probably no single biological target for the pharmacological effects of most inorganic drugs. Herein, we present an overview of some integrated and multi‐technique approaches to elucidate the molecular interactions underlying the biological effects of metallodrugs. On this premise, selected examples are used to illustrate how the information obtained on metal‐based drugs and their respective mechanisms can become relevant for applications in fields other than medicine. For example, some well‐known metallodrugs, which have been shown to bind specific amino acid residues of proteins, can be used to solve problems related to protein structure elucidation in crystallographic studies. Diruthenium tetraacetate can be used to catalyze the conversion of hydroxylamines to nitrones with a high selectivity when bound to lysozyme. Finally, a case study is presented in which an unprecedented palladium/arsenic‐mediated catalytic cycle for nitrile hydration was discovered thanks to previous studies on the solution chemistry of the anticancer compound arsenoplatin‐1 (AP‐1).
Starting from the description of integrated approaches for unveiling the molecular interactions underlying the biological effects of metallodrugs, through selected examples, it is highlighted how the obtained mechanistic information may turn relevant for the application of inorganic drugs in fields different from medicine. |
doi_str_mv | 10.1002/chem.202402647 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3094472657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094472657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2987-a4a162648e7b9f134d42915bbf609d06d22a4c99fa5ba0b1572dd5dbbf8da95a3</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EglJYGVEkFpYE3xOPpSpQQWEAFhbLsR2aKrVL3Khi4xF4Rp4EQ7lILEznSOc7v359ABwgmCEI8Yme2nmGIaYQc5pvgB5iGKUk52wT9KCgecoZETtgN4QZhFBwQrbBDhGIFQjRHni49u7t5XViTa1VkwwWiyYuy9q7kPgqGTvfPipX6-STqJ0NWTJIblf1Uk-TUxWsSbyLRz2NVFhG8NL5VWPNo90DW5Vqgt3_mn1wfza6G16kVzfn4-HgKtVYFHmqqEI8li9sXooKEWoojvXKsuJQGMgNxopqISrFSgVLxHJsDDPxXhglmCJ9cLzOXbT-qbNhKed10LZplLO-C5JEDTTHnOURPfqDznzXuthOEoQRii0gj1S2pnTrQ2htJRdtPVfts0RQfliXH9blj_X4cPgV25Vza37wb80REGtgVTf2-Z84ObwYTX7D3wGjzI5T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121164806</pqid></control><display><type>article</type><title>Non‐Medical Applications of Inorganic Medicines. A Switch Based on Mechanistic Knowledge</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Cirri, Damiano ; Di Leo, Riccardo ; Chiaverini, Lorenzo ; Tolbatov, Iogann ; Marrone, Alessandro ; Messori, Luigi ; Pratesi, Alessandro ; La Mendola, Diego ; Marzo, Tiziano</creator><creatorcontrib>Cirri, Damiano ; Di Leo, Riccardo ; Chiaverini, Lorenzo ; Tolbatov, Iogann ; Marrone, Alessandro ; Messori, Luigi ; Pratesi, Alessandro ; La Mendola, Diego ; Marzo, Tiziano</creatorcontrib><description>Metals have been used in medicine for centuries. However, it was not until much later that the effects of inorganic drugs could be rationalized from a mechanistic point of view. Today, thanks to the technologies available, this approach has been functionally developed and implemented. It has been found that there is probably no single biological target for the pharmacological effects of most inorganic drugs. Herein, we present an overview of some integrated and multi‐technique approaches to elucidate the molecular interactions underlying the biological effects of metallodrugs. On this premise, selected examples are used to illustrate how the information obtained on metal‐based drugs and their respective mechanisms can become relevant for applications in fields other than medicine. For example, some well‐known metallodrugs, which have been shown to bind specific amino acid residues of proteins, can be used to solve problems related to protein structure elucidation in crystallographic studies. Diruthenium tetraacetate can be used to catalyze the conversion of hydroxylamines to nitrones with a high selectivity when bound to lysozyme. Finally, a case study is presented in which an unprecedented palladium/arsenic‐mediated catalytic cycle for nitrile hydration was discovered thanks to previous studies on the solution chemistry of the anticancer compound arsenoplatin‐1 (AP‐1).
Starting from the description of integrated approaches for unveiling the molecular interactions underlying the biological effects of metallodrugs, through selected examples, it is highlighted how the obtained mechanistic information may turn relevant for the application of inorganic drugs in fields different from medicine.</description><identifier>ISSN: 0947-6539</identifier><identifier>ISSN: 1521-3765</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202402647</identifier><identifier>PMID: 39158114</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Amino acids ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Arsenic ; Arsenic - chemistry ; Arsenic compounds ; Biological effects ; Cancer ; Catalysis ; Catalytic converters ; Coordination Complexes - chemistry ; Crystallography ; Drug interaction ; Drug repurposing ; Drugs ; Heavy metals ; Humans ; Lysozyme ; Mass spectrometry ; Metallodrugs ; Molecular interactions ; Muramidase - chemistry ; Muramidase - metabolism ; Palladium ; Palladium - chemistry ; Protein structure ; Proteins ; X-ray crystallography</subject><ispartof>Chemistry : a European journal, 2024-10, Vol.30 (60), p.e202402647-n/a</ispartof><rights>2024 The Author(s). Chemistry - A European Journal published by Wiley-VCH GmbH</rights><rights>2024 The Author(s). Chemistry - A European Journal published by Wiley-VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2987-a4a162648e7b9f134d42915bbf609d06d22a4c99fa5ba0b1572dd5dbbf8da95a3</cites><orcidid>0000-0002-5051-1584 ; 0000-0003-4857-9819 ; 0000-0002-4193-7612 ; 0000-0002-8311-8172 ; 0000-0002-9490-8014 ; 0000-0001-9175-9562 ; 0000-0002-9553-9943 ; 0000-0002-2567-3637 ; 0000-0001-9700-5331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202402647$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202402647$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39158114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cirri, Damiano</creatorcontrib><creatorcontrib>Di Leo, Riccardo</creatorcontrib><creatorcontrib>Chiaverini, Lorenzo</creatorcontrib><creatorcontrib>Tolbatov, Iogann</creatorcontrib><creatorcontrib>Marrone, Alessandro</creatorcontrib><creatorcontrib>Messori, Luigi</creatorcontrib><creatorcontrib>Pratesi, Alessandro</creatorcontrib><creatorcontrib>La Mendola, Diego</creatorcontrib><creatorcontrib>Marzo, Tiziano</creatorcontrib><title>Non‐Medical Applications of Inorganic Medicines. A Switch Based on Mechanistic Knowledge</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Metals have been used in medicine for centuries. However, it was not until much later that the effects of inorganic drugs could be rationalized from a mechanistic point of view. Today, thanks to the technologies available, this approach has been functionally developed and implemented. It has been found that there is probably no single biological target for the pharmacological effects of most inorganic drugs. Herein, we present an overview of some integrated and multi‐technique approaches to elucidate the molecular interactions underlying the biological effects of metallodrugs. On this premise, selected examples are used to illustrate how the information obtained on metal‐based drugs and their respective mechanisms can become relevant for applications in fields other than medicine. For example, some well‐known metallodrugs, which have been shown to bind specific amino acid residues of proteins, can be used to solve problems related to protein structure elucidation in crystallographic studies. Diruthenium tetraacetate can be used to catalyze the conversion of hydroxylamines to nitrones with a high selectivity when bound to lysozyme. Finally, a case study is presented in which an unprecedented palladium/arsenic‐mediated catalytic cycle for nitrile hydration was discovered thanks to previous studies on the solution chemistry of the anticancer compound arsenoplatin‐1 (AP‐1).
Starting from the description of integrated approaches for unveiling the molecular interactions underlying the biological effects of metallodrugs, through selected examples, it is highlighted how the obtained mechanistic information may turn relevant for the application of inorganic drugs in fields different from medicine.</description><subject>Amino acids</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Arsenic</subject><subject>Arsenic - chemistry</subject><subject>Arsenic compounds</subject><subject>Biological effects</subject><subject>Cancer</subject><subject>Catalysis</subject><subject>Catalytic converters</subject><subject>Coordination Complexes - chemistry</subject><subject>Crystallography</subject><subject>Drug interaction</subject><subject>Drug repurposing</subject><subject>Drugs</subject><subject>Heavy metals</subject><subject>Humans</subject><subject>Lysozyme</subject><subject>Mass spectrometry</subject><subject>Metallodrugs</subject><subject>Molecular interactions</subject><subject>Muramidase - chemistry</subject><subject>Muramidase - metabolism</subject><subject>Palladium</subject><subject>Palladium - chemistry</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>X-ray crystallography</subject><issn>0947-6539</issn><issn>1521-3765</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkLtOwzAUhi0EglJYGVEkFpYE3xOPpSpQQWEAFhbLsR2aKrVL3Khi4xF4Rp4EQ7lILEznSOc7v359ABwgmCEI8Yme2nmGIaYQc5pvgB5iGKUk52wT9KCgecoZETtgN4QZhFBwQrbBDhGIFQjRHni49u7t5XViTa1VkwwWiyYuy9q7kPgqGTvfPipX6-STqJ0NWTJIblf1Uk-TUxWsSbyLRz2NVFhG8NL5VWPNo90DW5Vqgt3_mn1wfza6G16kVzfn4-HgKtVYFHmqqEI8li9sXooKEWoojvXKsuJQGMgNxopqISrFSgVLxHJsDDPxXhglmCJ9cLzOXbT-qbNhKed10LZplLO-C5JEDTTHnOURPfqDznzXuthOEoQRii0gj1S2pnTrQ2htJRdtPVfts0RQfliXH9blj_X4cPgV25Vza37wb80REGtgVTf2-Z84ObwYTX7D3wGjzI5T</recordid><startdate>20241028</startdate><enddate>20241028</enddate><creator>Cirri, Damiano</creator><creator>Di Leo, Riccardo</creator><creator>Chiaverini, Lorenzo</creator><creator>Tolbatov, Iogann</creator><creator>Marrone, Alessandro</creator><creator>Messori, Luigi</creator><creator>Pratesi, Alessandro</creator><creator>La Mendola, Diego</creator><creator>Marzo, Tiziano</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5051-1584</orcidid><orcidid>https://orcid.org/0000-0003-4857-9819</orcidid><orcidid>https://orcid.org/0000-0002-4193-7612</orcidid><orcidid>https://orcid.org/0000-0002-8311-8172</orcidid><orcidid>https://orcid.org/0000-0002-9490-8014</orcidid><orcidid>https://orcid.org/0000-0001-9175-9562</orcidid><orcidid>https://orcid.org/0000-0002-9553-9943</orcidid><orcidid>https://orcid.org/0000-0002-2567-3637</orcidid><orcidid>https://orcid.org/0000-0001-9700-5331</orcidid></search><sort><creationdate>20241028</creationdate><title>Non‐Medical Applications of Inorganic Medicines. A Switch Based on Mechanistic Knowledge</title><author>Cirri, Damiano ; Di Leo, Riccardo ; Chiaverini, Lorenzo ; Tolbatov, Iogann ; Marrone, Alessandro ; Messori, Luigi ; Pratesi, Alessandro ; La Mendola, Diego ; Marzo, Tiziano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2987-a4a162648e7b9f134d42915bbf609d06d22a4c99fa5ba0b1572dd5dbbf8da95a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino acids</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Arsenic</topic><topic>Arsenic - chemistry</topic><topic>Arsenic compounds</topic><topic>Biological effects</topic><topic>Cancer</topic><topic>Catalysis</topic><topic>Catalytic converters</topic><topic>Coordination Complexes - chemistry</topic><topic>Crystallography</topic><topic>Drug interaction</topic><topic>Drug repurposing</topic><topic>Drugs</topic><topic>Heavy metals</topic><topic>Humans</topic><topic>Lysozyme</topic><topic>Mass spectrometry</topic><topic>Metallodrugs</topic><topic>Molecular interactions</topic><topic>Muramidase - chemistry</topic><topic>Muramidase - metabolism</topic><topic>Palladium</topic><topic>Palladium - chemistry</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cirri, Damiano</creatorcontrib><creatorcontrib>Di Leo, Riccardo</creatorcontrib><creatorcontrib>Chiaverini, Lorenzo</creatorcontrib><creatorcontrib>Tolbatov, Iogann</creatorcontrib><creatorcontrib>Marrone, Alessandro</creatorcontrib><creatorcontrib>Messori, Luigi</creatorcontrib><creatorcontrib>Pratesi, Alessandro</creatorcontrib><creatorcontrib>La Mendola, Diego</creatorcontrib><creatorcontrib>Marzo, Tiziano</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cirri, Damiano</au><au>Di Leo, Riccardo</au><au>Chiaverini, Lorenzo</au><au>Tolbatov, Iogann</au><au>Marrone, Alessandro</au><au>Messori, Luigi</au><au>Pratesi, Alessandro</au><au>La Mendola, Diego</au><au>Marzo, Tiziano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐Medical Applications of Inorganic Medicines. A Switch Based on Mechanistic Knowledge</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2024-10-28</date><risdate>2024</risdate><volume>30</volume><issue>60</issue><spage>e202402647</spage><epage>n/a</epage><pages>e202402647-n/a</pages><issn>0947-6539</issn><issn>1521-3765</issn><eissn>1521-3765</eissn><abstract>Metals have been used in medicine for centuries. However, it was not until much later that the effects of inorganic drugs could be rationalized from a mechanistic point of view. Today, thanks to the technologies available, this approach has been functionally developed and implemented. It has been found that there is probably no single biological target for the pharmacological effects of most inorganic drugs. Herein, we present an overview of some integrated and multi‐technique approaches to elucidate the molecular interactions underlying the biological effects of metallodrugs. On this premise, selected examples are used to illustrate how the information obtained on metal‐based drugs and their respective mechanisms can become relevant for applications in fields other than medicine. For example, some well‐known metallodrugs, which have been shown to bind specific amino acid residues of proteins, can be used to solve problems related to protein structure elucidation in crystallographic studies. Diruthenium tetraacetate can be used to catalyze the conversion of hydroxylamines to nitrones with a high selectivity when bound to lysozyme. Finally, a case study is presented in which an unprecedented palladium/arsenic‐mediated catalytic cycle for nitrile hydration was discovered thanks to previous studies on the solution chemistry of the anticancer compound arsenoplatin‐1 (AP‐1).
Starting from the description of integrated approaches for unveiling the molecular interactions underlying the biological effects of metallodrugs, through selected examples, it is highlighted how the obtained mechanistic information may turn relevant for the application of inorganic drugs in fields different from medicine.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39158114</pmid><doi>10.1002/chem.202402647</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5051-1584</orcidid><orcidid>https://orcid.org/0000-0003-4857-9819</orcidid><orcidid>https://orcid.org/0000-0002-4193-7612</orcidid><orcidid>https://orcid.org/0000-0002-8311-8172</orcidid><orcidid>https://orcid.org/0000-0002-9490-8014</orcidid><orcidid>https://orcid.org/0000-0001-9175-9562</orcidid><orcidid>https://orcid.org/0000-0002-9553-9943</orcidid><orcidid>https://orcid.org/0000-0002-2567-3637</orcidid><orcidid>https://orcid.org/0000-0001-9700-5331</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2024-10, Vol.30 (60), p.e202402647-n/a |
issn | 0947-6539 1521-3765 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_3094472657 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Amino acids Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Arsenic Arsenic - chemistry Arsenic compounds Biological effects Cancer Catalysis Catalytic converters Coordination Complexes - chemistry Crystallography Drug interaction Drug repurposing Drugs Heavy metals Humans Lysozyme Mass spectrometry Metallodrugs Molecular interactions Muramidase - chemistry Muramidase - metabolism Palladium Palladium - chemistry Protein structure Proteins X-ray crystallography |
title | Non‐Medical Applications of Inorganic Medicines. A Switch Based on Mechanistic Knowledge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A50%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90Medical%20Applications%20of%20Inorganic%20Medicines.%20A%20Switch%20Based%20on%20Mechanistic%20Knowledge&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Cirri,%20Damiano&rft.date=2024-10-28&rft.volume=30&rft.issue=60&rft.spage=e202402647&rft.epage=n/a&rft.pages=e202402647-n/a&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202402647&rft_dat=%3Cproquest_cross%3E3094472657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121164806&rft_id=info:pmid/39158114&rfr_iscdi=true |