A Deniable Encryption Method for Modulation-Based DNA Storage
Recent advancements in synthesis and sequencing techniques have made deoxyribonucleic acid (DNA) a promising alternative for next-generation digital storage. As it approaches practical application, ensuring the security of DNA-stored information has become a critical problem. Deniable encryption all...
Gespeichert in:
Veröffentlicht in: | Interdisciplinary sciences : computational life sciences 2024-12, Vol.16 (4), p.872-881 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 881 |
---|---|
container_issue | 4 |
container_start_page | 872 |
container_title | Interdisciplinary sciences : computational life sciences |
container_volume | 16 |
creator | Chu, Ling Su, Yanqing Zan, Xiangzhen Lin, Wanmin Yao, Xiangyu Xu, Peng Liu, Wenbin |
description | Recent advancements in synthesis and sequencing techniques have made deoxyribonucleic acid (DNA) a promising alternative for next-generation digital storage. As it approaches practical application, ensuring the security of DNA-stored information has become a critical problem. Deniable encryption allows the decryption of different information from the same ciphertext, ensuring that the “plausible” fake information can be provided when users are coerced to reveal the real information. In this paper, we propose a deniable encryption method that uniquely leverages DNA noise channels. Specifically, true and fake messages are encrypted by two similar modulation carriers and subsequently obfuscated by inherent errors. Experiment results demonstrate that our method not only can conceal true information among fake ones indistinguishably, but also allow both the coercive adversary and the legitimate receiver to decrypt the intended information accurately. Further security analysis validates the resistance of our method against various typical attacks. Compared with conventional DNA cryptography methods based on complex biological operations, our method offers superior practicality and reliability, positioning it as an ideal solution for data encryption in future large-scale DNA storage applications. |
doi_str_mv | 10.1007/s12539-024-00648-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3094470616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121049544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-55335c6f01418ab735b422531766de6cdf358a1792e89697ef0228f684fc36923</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwBxhQJBYWg78dDwylLR9SCwMwW07ilFZpXOxk6L_HbQpIDExnnZ977_QAcI7RNUZI3gRMOFUQEQYREiyF_AD0cSokxEyQw_hWmEIiOe6BkxCWO4iiY9CjCnNOCeuD22EytvXCZJVNJnXuN-tm4epkZpsPVySl88nMFW1ltl14Z4ItkvHzMHltnDdzewqOSlMFe7avA_B-P3kbPcLpy8PTaDiFOeGigXEX5bkoEWY4NZmkPGMk3o6lEIUVeVFSnhosFbGpEkraEhGSliJlZU6FInQArrrctXefrQ2NXi1CbqvK1Na1QVOkGJNIYBHRyz_o0rW-jtdpiglGTHHGIkU6KvcuBG9LvfaLlfEbjZHeytWdXB3l6p03zePQxT66zVa2-Bn5thkB2gEhftVz6393_xP7BTsTgMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121049544</pqid></control><display><type>article</type><title>A Deniable Encryption Method for Modulation-Based DNA Storage</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chu, Ling ; Su, Yanqing ; Zan, Xiangzhen ; Lin, Wanmin ; Yao, Xiangyu ; Xu, Peng ; Liu, Wenbin</creator><creatorcontrib>Chu, Ling ; Su, Yanqing ; Zan, Xiangzhen ; Lin, Wanmin ; Yao, Xiangyu ; Xu, Peng ; Liu, Wenbin</creatorcontrib><description>Recent advancements in synthesis and sequencing techniques have made deoxyribonucleic acid (DNA) a promising alternative for next-generation digital storage. As it approaches practical application, ensuring the security of DNA-stored information has become a critical problem. Deniable encryption allows the decryption of different information from the same ciphertext, ensuring that the “plausible” fake information can be provided when users are coerced to reveal the real information. In this paper, we propose a deniable encryption method that uniquely leverages DNA noise channels. Specifically, true and fake messages are encrypted by two similar modulation carriers and subsequently obfuscated by inherent errors. Experiment results demonstrate that our method not only can conceal true information among fake ones indistinguishably, but also allow both the coercive adversary and the legitimate receiver to decrypt the intended information accurately. Further security analysis validates the resistance of our method against various typical attacks. Compared with conventional DNA cryptography methods based on complex biological operations, our method offers superior practicality and reliability, positioning it as an ideal solution for data encryption in future large-scale DNA storage applications.</description><identifier>ISSN: 1913-2751</identifier><identifier>ISSN: 1867-1462</identifier><identifier>EISSN: 1867-1462</identifier><identifier>DOI: 10.1007/s12539-024-00648-5</identifier><identifier>PMID: 39155324</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Biological effects ; Biomedical and Life Sciences ; Coercivity ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Appl. in Life Sciences ; Cryptography ; Data encryption ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA sequencing ; Encryption ; Gene sequencing ; Health Sciences ; Information Storage and Retrieval - methods ; Life Sciences ; Mathematical and Computational Physics ; Medicine ; Modulation ; Original Research Article ; Security ; Statistics for Life Sciences ; Theoretical ; Theoretical and Computational Chemistry</subject><ispartof>Interdisciplinary sciences : computational life sciences, 2024-12, Vol.16 (4), p.872-881</ispartof><rights>International Association of Scientists in the Interdisciplinary Areas 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. International Association of Scientists in the Interdisciplinary Areas.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-55335c6f01418ab735b422531766de6cdf358a1792e89697ef0228f684fc36923</cites><orcidid>0000-0001-9091-3177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12539-024-00648-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12539-024-00648-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39155324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Ling</creatorcontrib><creatorcontrib>Su, Yanqing</creatorcontrib><creatorcontrib>Zan, Xiangzhen</creatorcontrib><creatorcontrib>Lin, Wanmin</creatorcontrib><creatorcontrib>Yao, Xiangyu</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Liu, Wenbin</creatorcontrib><title>A Deniable Encryption Method for Modulation-Based DNA Storage</title><title>Interdisciplinary sciences : computational life sciences</title><addtitle>Interdiscip Sci Comput Life Sci</addtitle><addtitle>Interdiscip Sci</addtitle><description>Recent advancements in synthesis and sequencing techniques have made deoxyribonucleic acid (DNA) a promising alternative for next-generation digital storage. As it approaches practical application, ensuring the security of DNA-stored information has become a critical problem. Deniable encryption allows the decryption of different information from the same ciphertext, ensuring that the “plausible” fake information can be provided when users are coerced to reveal the real information. In this paper, we propose a deniable encryption method that uniquely leverages DNA noise channels. Specifically, true and fake messages are encrypted by two similar modulation carriers and subsequently obfuscated by inherent errors. Experiment results demonstrate that our method not only can conceal true information among fake ones indistinguishably, but also allow both the coercive adversary and the legitimate receiver to decrypt the intended information accurately. Further security analysis validates the resistance of our method against various typical attacks. Compared with conventional DNA cryptography methods based on complex biological operations, our method offers superior practicality and reliability, positioning it as an ideal solution for data encryption in future large-scale DNA storage applications.</description><subject>Biological effects</subject><subject>Biomedical and Life Sciences</subject><subject>Coercivity</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Appl. in Life Sciences</subject><subject>Cryptography</subject><subject>Data encryption</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA sequencing</subject><subject>Encryption</subject><subject>Gene sequencing</subject><subject>Health Sciences</subject><subject>Information Storage and Retrieval - methods</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Physics</subject><subject>Medicine</subject><subject>Modulation</subject><subject>Original Research Article</subject><subject>Security</subject><subject>Statistics for Life Sciences</subject><subject>Theoretical</subject><subject>Theoretical and Computational Chemistry</subject><issn>1913-2751</issn><issn>1867-1462</issn><issn>1867-1462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwBxhQJBYWg78dDwylLR9SCwMwW07ilFZpXOxk6L_HbQpIDExnnZ977_QAcI7RNUZI3gRMOFUQEQYREiyF_AD0cSokxEyQw_hWmEIiOe6BkxCWO4iiY9CjCnNOCeuD22EytvXCZJVNJnXuN-tm4epkZpsPVySl88nMFW1ltl14Z4ItkvHzMHltnDdzewqOSlMFe7avA_B-P3kbPcLpy8PTaDiFOeGigXEX5bkoEWY4NZmkPGMk3o6lEIUVeVFSnhosFbGpEkraEhGSliJlZU6FInQArrrctXefrQ2NXi1CbqvK1Na1QVOkGJNIYBHRyz_o0rW-jtdpiglGTHHGIkU6KvcuBG9LvfaLlfEbjZHeytWdXB3l6p03zePQxT66zVa2-Bn5thkB2gEhftVz6393_xP7BTsTgMI</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Chu, Ling</creator><creator>Su, Yanqing</creator><creator>Zan, Xiangzhen</creator><creator>Lin, Wanmin</creator><creator>Yao, Xiangyu</creator><creator>Xu, Peng</creator><creator>Liu, Wenbin</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9091-3177</orcidid></search><sort><creationdate>20241201</creationdate><title>A Deniable Encryption Method for Modulation-Based DNA Storage</title><author>Chu, Ling ; Su, Yanqing ; Zan, Xiangzhen ; Lin, Wanmin ; Yao, Xiangyu ; Xu, Peng ; Liu, Wenbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-55335c6f01418ab735b422531766de6cdf358a1792e89697ef0228f684fc36923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological effects</topic><topic>Biomedical and Life Sciences</topic><topic>Coercivity</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Appl. in Life Sciences</topic><topic>Cryptography</topic><topic>Data encryption</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA sequencing</topic><topic>Encryption</topic><topic>Gene sequencing</topic><topic>Health Sciences</topic><topic>Information Storage and Retrieval - methods</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Physics</topic><topic>Medicine</topic><topic>Modulation</topic><topic>Original Research Article</topic><topic>Security</topic><topic>Statistics for Life Sciences</topic><topic>Theoretical</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>online_resources</toplevel><creatorcontrib>Chu, Ling</creatorcontrib><creatorcontrib>Su, Yanqing</creatorcontrib><creatorcontrib>Zan, Xiangzhen</creatorcontrib><creatorcontrib>Lin, Wanmin</creatorcontrib><creatorcontrib>Yao, Xiangyu</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Liu, Wenbin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Interdisciplinary sciences : computational life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Ling</au><au>Su, Yanqing</au><au>Zan, Xiangzhen</au><au>Lin, Wanmin</au><au>Yao, Xiangyu</au><au>Xu, Peng</au><au>Liu, Wenbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deniable Encryption Method for Modulation-Based DNA Storage</atitle><jtitle>Interdisciplinary sciences : computational life sciences</jtitle><stitle>Interdiscip Sci Comput Life Sci</stitle><addtitle>Interdiscip Sci</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>16</volume><issue>4</issue><spage>872</spage><epage>881</epage><pages>872-881</pages><issn>1913-2751</issn><issn>1867-1462</issn><eissn>1867-1462</eissn><abstract>Recent advancements in synthesis and sequencing techniques have made deoxyribonucleic acid (DNA) a promising alternative for next-generation digital storage. As it approaches practical application, ensuring the security of DNA-stored information has become a critical problem. Deniable encryption allows the decryption of different information from the same ciphertext, ensuring that the “plausible” fake information can be provided when users are coerced to reveal the real information. In this paper, we propose a deniable encryption method that uniquely leverages DNA noise channels. Specifically, true and fake messages are encrypted by two similar modulation carriers and subsequently obfuscated by inherent errors. Experiment results demonstrate that our method not only can conceal true information among fake ones indistinguishably, but also allow both the coercive adversary and the legitimate receiver to decrypt the intended information accurately. Further security analysis validates the resistance of our method against various typical attacks. Compared with conventional DNA cryptography methods based on complex biological operations, our method offers superior practicality and reliability, positioning it as an ideal solution for data encryption in future large-scale DNA storage applications.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>39155324</pmid><doi>10.1007/s12539-024-00648-5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9091-3177</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1913-2751 |
ispartof | Interdisciplinary sciences : computational life sciences, 2024-12, Vol.16 (4), p.872-881 |
issn | 1913-2751 1867-1462 1867-1462 |
language | eng |
recordid | cdi_proquest_miscellaneous_3094470616 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Biological effects Biomedical and Life Sciences Coercivity Computational Biology/Bioinformatics Computational Science and Engineering Computer Appl. in Life Sciences Cryptography Data encryption Deoxyribonucleic acid DNA DNA biosynthesis DNA sequencing Encryption Gene sequencing Health Sciences Information Storage and Retrieval - methods Life Sciences Mathematical and Computational Physics Medicine Modulation Original Research Article Security Statistics for Life Sciences Theoretical Theoretical and Computational Chemistry |
title | A Deniable Encryption Method for Modulation-Based DNA Storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deniable%20Encryption%20Method%20for%20Modulation-Based%20DNA%20Storage&rft.jtitle=Interdisciplinary%20sciences%20:%20computational%20life%20sciences&rft.au=Chu,%20Ling&rft.date=2024-12-01&rft.volume=16&rft.issue=4&rft.spage=872&rft.epage=881&rft.pages=872-881&rft.issn=1913-2751&rft.eissn=1867-1462&rft_id=info:doi/10.1007/s12539-024-00648-5&rft_dat=%3Cproquest_cross%3E3121049544%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121049544&rft_id=info:pmid/39155324&rfr_iscdi=true |