Corrosion behavior of electroless Ni–P alloy coatings containing tungsten or nano-scattered alumina composite in 3.5% NaCl solution

The corrosion protection performance of electroless deposited nickel–phosphorus (Ni–P) alloy coatings containing tungsten (Ni–P–W) or nano-scattered alumina (Ni–P–Al 2O 3) composite coatings on low carbon steel was studied. The effect of heat treatment on the coating performance was also studied. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2007-11, Vol.202 (1), p.162-171
Hauptverfasser: Hamdy, Abdel Salam, Shoeib, M.A., Hady, H., Abdel Salam, O.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171
container_issue 1
container_start_page 162
container_title Surface & coatings technology
container_volume 202
creator Hamdy, Abdel Salam
Shoeib, M.A.
Hady, H.
Abdel Salam, O.F.
description The corrosion protection performance of electroless deposited nickel–phosphorus (Ni–P) alloy coatings containing tungsten (Ni–P–W) or nano-scattered alumina (Ni–P–Al 2O 3) composite coatings on low carbon steel was studied. The effect of heat treatment on the coating performance was also studied. The optimum conditions under which such coatings can provide good corrosion protection to the substrate were determined after two weeks of immersion in 3.5% NaCl solution. Electrochemical impedance spectroscopy (EIS) and polarization measurements have been used to evaluate the coating performance before and after heat treatment. The Ni–P–W coatings showed the highest surface resistance compared with Ni–P–Al 2O 3 and Ni–P. The surface resistance of Ni–P–W coatings was 12.0 × 10 4 Ω cm 2 which is about the double of the resistance showed by Ni–P–Al 2O 3 (7.00 × 10 4 Ω cm 2) and twenty times greater than the surface resistance of Ni–P (0.78 × 10 4 Ω cm 2). XRD analysis of non-heat-treated samples revealed formation of a protective tungsten phosphide phase. Heat treatment has an adverse effect on the corrosion protection performance of tungsten and alumina composite coatings. The surface resistance decreased sharply after heat treatment.
doi_str_mv 10.1016/j.surfcoat.2007.05.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30942543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897207005361</els_id><sourcerecordid>30942543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-8a2e559c068d7a44f4e1afc4837c21eeaf5c4ceacec0149e0030f128e4fe0a2a3</originalsourceid><addsrcrecordid>eNqFkE1uFDEQRi0EEkPgCsibsOum3HaPu3egEX9SFLIga6vwlMEjjz3Y7kjZsckJuCEniYcJYsnKJev76qkeYy8F9ALE-vWuL0t2NmHtBwDdw9iDhEdsJSY9d1Iq_ZitYBh1N816eMqelbIDAKFntWJ3m5RzKj5F_pW-441PmSfHKZCtOQUqhV_63z9_XXEMId3yI8bHb6UNsaKPbeZ1aR-VIm_diDF1xWKtlGnbSsveR2zp_aFRKnEfuezHc36Jm8BLCktt7OfsicNQ6MXDe8au37_7svnYXXz-8Gnz9qKzUsvaTTjQOM4W1tNWo1JOkUBn1SS1HQQRutEqS2jJglAzQfPgxDCRcgQ4oDxjr057Dzn9WKhUs_fFUggYKS3FSJjVMCrZgutT0DY5JZMzh-z3mG-NAHO0bnbmr3VztG5gNI3WiucPBGwWgssYrS__2rPQQv4BvDnlqJ174ymbYj1FS1ufm3qzTf5_qHt-laAS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30942543</pqid></control><display><type>article</type><title>Corrosion behavior of electroless Ni–P alloy coatings containing tungsten or nano-scattered alumina composite in 3.5% NaCl solution</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hamdy, Abdel Salam ; Shoeib, M.A. ; Hady, H. ; Abdel Salam, O.F.</creator><creatorcontrib>Hamdy, Abdel Salam ; Shoeib, M.A. ; Hady, H. ; Abdel Salam, O.F.</creatorcontrib><description>The corrosion protection performance of electroless deposited nickel–phosphorus (Ni–P) alloy coatings containing tungsten (Ni–P–W) or nano-scattered alumina (Ni–P–Al 2O 3) composite coatings on low carbon steel was studied. The effect of heat treatment on the coating performance was also studied. The optimum conditions under which such coatings can provide good corrosion protection to the substrate were determined after two weeks of immersion in 3.5% NaCl solution. Electrochemical impedance spectroscopy (EIS) and polarization measurements have been used to evaluate the coating performance before and after heat treatment. The Ni–P–W coatings showed the highest surface resistance compared with Ni–P–Al 2O 3 and Ni–P. The surface resistance of Ni–P–W coatings was 12.0 × 10 4 Ω cm 2 which is about the double of the resistance showed by Ni–P–Al 2O 3 (7.00 × 10 4 Ω cm 2) and twenty times greater than the surface resistance of Ni–P (0.78 × 10 4 Ω cm 2). XRD analysis of non-heat-treated samples revealed formation of a protective tungsten phosphide phase. Heat treatment has an adverse effect on the corrosion protection performance of tungsten and alumina composite coatings. The surface resistance decreased sharply after heat treatment.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2007.05.030</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Corrosion ; Corrosion environments ; Cross-disciplinary physics: materials science; rheology ; Electrochemical impedance spectroscopy ; Exact sciences and technology ; Heat treatment ; Low carbon steel ; Materials science ; Metallic coatings ; Metals. Metallurgy ; Ni–P–Al 2O 3 composite coatings ; Ni–P–W ternary coatings ; Physics ; Production techniques ; Surface treatment ; Surface treatments ; Ternary electroless composite coatings</subject><ispartof>Surface &amp; coatings technology, 2007-11, Vol.202 (1), p.162-171</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-8a2e559c068d7a44f4e1afc4837c21eeaf5c4ceacec0149e0030f128e4fe0a2a3</citedby><cites>FETCH-LOGICAL-c373t-8a2e559c068d7a44f4e1afc4837c21eeaf5c4ceacec0149e0030f128e4fe0a2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2007.05.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19171343$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamdy, Abdel Salam</creatorcontrib><creatorcontrib>Shoeib, M.A.</creatorcontrib><creatorcontrib>Hady, H.</creatorcontrib><creatorcontrib>Abdel Salam, O.F.</creatorcontrib><title>Corrosion behavior of electroless Ni–P alloy coatings containing tungsten or nano-scattered alumina composite in 3.5% NaCl solution</title><title>Surface &amp; coatings technology</title><description>The corrosion protection performance of electroless deposited nickel–phosphorus (Ni–P) alloy coatings containing tungsten (Ni–P–W) or nano-scattered alumina (Ni–P–Al 2O 3) composite coatings on low carbon steel was studied. The effect of heat treatment on the coating performance was also studied. The optimum conditions under which such coatings can provide good corrosion protection to the substrate were determined after two weeks of immersion in 3.5% NaCl solution. Electrochemical impedance spectroscopy (EIS) and polarization measurements have been used to evaluate the coating performance before and after heat treatment. The Ni–P–W coatings showed the highest surface resistance compared with Ni–P–Al 2O 3 and Ni–P. The surface resistance of Ni–P–W coatings was 12.0 × 10 4 Ω cm 2 which is about the double of the resistance showed by Ni–P–Al 2O 3 (7.00 × 10 4 Ω cm 2) and twenty times greater than the surface resistance of Ni–P (0.78 × 10 4 Ω cm 2). XRD analysis of non-heat-treated samples revealed formation of a protective tungsten phosphide phase. Heat treatment has an adverse effect on the corrosion protection performance of tungsten and alumina composite coatings. The surface resistance decreased sharply after heat treatment.</description><subject>Applied sciences</subject><subject>Corrosion</subject><subject>Corrosion environments</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Exact sciences and technology</subject><subject>Heat treatment</subject><subject>Low carbon steel</subject><subject>Materials science</subject><subject>Metallic coatings</subject><subject>Metals. Metallurgy</subject><subject>Ni–P–Al 2O 3 composite coatings</subject><subject>Ni–P–W ternary coatings</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Surface treatment</subject><subject>Surface treatments</subject><subject>Ternary electroless composite coatings</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkE1uFDEQRi0EEkPgCsibsOum3HaPu3egEX9SFLIga6vwlMEjjz3Y7kjZsckJuCEniYcJYsnKJev76qkeYy8F9ALE-vWuL0t2NmHtBwDdw9iDhEdsJSY9d1Iq_ZitYBh1N816eMqelbIDAKFntWJ3m5RzKj5F_pW-441PmSfHKZCtOQUqhV_63z9_XXEMId3yI8bHb6UNsaKPbeZ1aR-VIm_diDF1xWKtlGnbSsveR2zp_aFRKnEfuezHc36Jm8BLCktt7OfsicNQ6MXDe8au37_7svnYXXz-8Gnz9qKzUsvaTTjQOM4W1tNWo1JOkUBn1SS1HQQRutEqS2jJglAzQfPgxDCRcgQ4oDxjr057Dzn9WKhUs_fFUggYKS3FSJjVMCrZgutT0DY5JZMzh-z3mG-NAHO0bnbmr3VztG5gNI3WiucPBGwWgssYrS__2rPQQv4BvDnlqJ174ymbYj1FS1ufm3qzTf5_qHt-laAS</recordid><startdate>20071115</startdate><enddate>20071115</enddate><creator>Hamdy, Abdel Salam</creator><creator>Shoeib, M.A.</creator><creator>Hady, H.</creator><creator>Abdel Salam, O.F.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SE</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20071115</creationdate><title>Corrosion behavior of electroless Ni–P alloy coatings containing tungsten or nano-scattered alumina composite in 3.5% NaCl solution</title><author>Hamdy, Abdel Salam ; Shoeib, M.A. ; Hady, H. ; Abdel Salam, O.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-8a2e559c068d7a44f4e1afc4837c21eeaf5c4ceacec0149e0030f128e4fe0a2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Corrosion</topic><topic>Corrosion environments</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Exact sciences and technology</topic><topic>Heat treatment</topic><topic>Low carbon steel</topic><topic>Materials science</topic><topic>Metallic coatings</topic><topic>Metals. Metallurgy</topic><topic>Ni–P–Al 2O 3 composite coatings</topic><topic>Ni–P–W ternary coatings</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Surface treatment</topic><topic>Surface treatments</topic><topic>Ternary electroless composite coatings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamdy, Abdel Salam</creatorcontrib><creatorcontrib>Shoeib, M.A.</creatorcontrib><creatorcontrib>Hady, H.</creatorcontrib><creatorcontrib>Abdel Salam, O.F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamdy, Abdel Salam</au><au>Shoeib, M.A.</au><au>Hady, H.</au><au>Abdel Salam, O.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion behavior of electroless Ni–P alloy coatings containing tungsten or nano-scattered alumina composite in 3.5% NaCl solution</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2007-11-15</date><risdate>2007</risdate><volume>202</volume><issue>1</issue><spage>162</spage><epage>171</epage><pages>162-171</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>The corrosion protection performance of electroless deposited nickel–phosphorus (Ni–P) alloy coatings containing tungsten (Ni–P–W) or nano-scattered alumina (Ni–P–Al 2O 3) composite coatings on low carbon steel was studied. The effect of heat treatment on the coating performance was also studied. The optimum conditions under which such coatings can provide good corrosion protection to the substrate were determined after two weeks of immersion in 3.5% NaCl solution. Electrochemical impedance spectroscopy (EIS) and polarization measurements have been used to evaluate the coating performance before and after heat treatment. The Ni–P–W coatings showed the highest surface resistance compared with Ni–P–Al 2O 3 and Ni–P. The surface resistance of Ni–P–W coatings was 12.0 × 10 4 Ω cm 2 which is about the double of the resistance showed by Ni–P–Al 2O 3 (7.00 × 10 4 Ω cm 2) and twenty times greater than the surface resistance of Ni–P (0.78 × 10 4 Ω cm 2). XRD analysis of non-heat-treated samples revealed formation of a protective tungsten phosphide phase. Heat treatment has an adverse effect on the corrosion protection performance of tungsten and alumina composite coatings. The surface resistance decreased sharply after heat treatment.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2007.05.030</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2007-11, Vol.202 (1), p.162-171
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_miscellaneous_30942543
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Corrosion
Corrosion environments
Cross-disciplinary physics: materials science
rheology
Electrochemical impedance spectroscopy
Exact sciences and technology
Heat treatment
Low carbon steel
Materials science
Metallic coatings
Metals. Metallurgy
Ni–P–Al 2O 3 composite coatings
Ni–P–W ternary coatings
Physics
Production techniques
Surface treatment
Surface treatments
Ternary electroless composite coatings
title Corrosion behavior of electroless Ni–P alloy coatings containing tungsten or nano-scattered alumina composite in 3.5% NaCl solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20behavior%20of%20electroless%20Ni%E2%80%93P%20alloy%20coatings%20containing%20tungsten%20or%20nano-scattered%20alumina%20composite%20in%203.5%25%20NaCl%20solution&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Hamdy,%20Abdel%20Salam&rft.date=2007-11-15&rft.volume=202&rft.issue=1&rft.spage=162&rft.epage=171&rft.pages=162-171&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2007.05.030&rft_dat=%3Cproquest_cross%3E30942543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30942543&rft_id=info:pmid/&rft_els_id=S0257897207005361&rfr_iscdi=true