Corrosion behavior of electroless Ni–P alloy coatings containing tungsten or nano-scattered alumina composite in 3.5% NaCl solution
The corrosion protection performance of electroless deposited nickel–phosphorus (Ni–P) alloy coatings containing tungsten (Ni–P–W) or nano-scattered alumina (Ni–P–Al 2O 3) composite coatings on low carbon steel was studied. The effect of heat treatment on the coating performance was also studied. Th...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2007-11, Vol.202 (1), p.162-171 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 171 |
---|---|
container_issue | 1 |
container_start_page | 162 |
container_title | Surface & coatings technology |
container_volume | 202 |
creator | Hamdy, Abdel Salam Shoeib, M.A. Hady, H. Abdel Salam, O.F. |
description | The corrosion protection performance of electroless deposited nickel–phosphorus (Ni–P) alloy coatings containing tungsten (Ni–P–W) or nano-scattered alumina (Ni–P–Al
2O
3) composite coatings on low carbon steel was studied. The effect of heat treatment on the coating performance was also studied. The optimum conditions under which such coatings can provide good corrosion protection to the substrate were determined after two weeks of immersion in 3.5% NaCl solution. Electrochemical impedance spectroscopy (EIS) and polarization measurements have been used to evaluate the coating performance before and after heat treatment. The Ni–P–W coatings showed the highest surface resistance compared with Ni–P–Al
2O
3 and Ni–P. The surface resistance of Ni–P–W coatings was 12.0
×
10
4 Ω cm
2 which is about the double of the resistance showed by Ni–P–Al
2O
3 (7.00
×
10
4 Ω cm
2) and twenty times greater than the surface resistance of Ni–P (0.78
×
10
4 Ω cm
2). XRD analysis of non-heat-treated samples revealed formation of a protective tungsten phosphide phase. Heat treatment has an adverse effect on the corrosion protection performance of tungsten and alumina composite coatings. The surface resistance decreased sharply after heat treatment. |
doi_str_mv | 10.1016/j.surfcoat.2007.05.030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30942543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897207005361</els_id><sourcerecordid>30942543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-8a2e559c068d7a44f4e1afc4837c21eeaf5c4ceacec0149e0030f128e4fe0a2a3</originalsourceid><addsrcrecordid>eNqFkE1uFDEQRi0EEkPgCsibsOum3HaPu3egEX9SFLIga6vwlMEjjz3Y7kjZsckJuCEniYcJYsnKJev76qkeYy8F9ALE-vWuL0t2NmHtBwDdw9iDhEdsJSY9d1Iq_ZitYBh1N816eMqelbIDAKFntWJ3m5RzKj5F_pW-441PmSfHKZCtOQUqhV_63z9_XXEMId3yI8bHb6UNsaKPbeZ1aR-VIm_diDF1xWKtlGnbSsveR2zp_aFRKnEfuezHc36Jm8BLCktt7OfsicNQ6MXDe8au37_7svnYXXz-8Gnz9qKzUsvaTTjQOM4W1tNWo1JOkUBn1SS1HQQRutEqS2jJglAzQfPgxDCRcgQ4oDxjr057Dzn9WKhUs_fFUggYKS3FSJjVMCrZgutT0DY5JZMzh-z3mG-NAHO0bnbmr3VztG5gNI3WiucPBGwWgssYrS__2rPQQv4BvDnlqJ174ymbYj1FS1ufm3qzTf5_qHt-laAS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30942543</pqid></control><display><type>article</type><title>Corrosion behavior of electroless Ni–P alloy coatings containing tungsten or nano-scattered alumina composite in 3.5% NaCl solution</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hamdy, Abdel Salam ; Shoeib, M.A. ; Hady, H. ; Abdel Salam, O.F.</creator><creatorcontrib>Hamdy, Abdel Salam ; Shoeib, M.A. ; Hady, H. ; Abdel Salam, O.F.</creatorcontrib><description>The corrosion protection performance of electroless deposited nickel–phosphorus (Ni–P) alloy coatings containing tungsten (Ni–P–W) or nano-scattered alumina (Ni–P–Al
2O
3) composite coatings on low carbon steel was studied. The effect of heat treatment on the coating performance was also studied. The optimum conditions under which such coatings can provide good corrosion protection to the substrate were determined after two weeks of immersion in 3.5% NaCl solution. Electrochemical impedance spectroscopy (EIS) and polarization measurements have been used to evaluate the coating performance before and after heat treatment. The Ni–P–W coatings showed the highest surface resistance compared with Ni–P–Al
2O
3 and Ni–P. The surface resistance of Ni–P–W coatings was 12.0
×
10
4 Ω cm
2 which is about the double of the resistance showed by Ni–P–Al
2O
3 (7.00
×
10
4 Ω cm
2) and twenty times greater than the surface resistance of Ni–P (0.78
×
10
4 Ω cm
2). XRD analysis of non-heat-treated samples revealed formation of a protective tungsten phosphide phase. Heat treatment has an adverse effect on the corrosion protection performance of tungsten and alumina composite coatings. The surface resistance decreased sharply after heat treatment.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2007.05.030</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Corrosion ; Corrosion environments ; Cross-disciplinary physics: materials science; rheology ; Electrochemical impedance spectroscopy ; Exact sciences and technology ; Heat treatment ; Low carbon steel ; Materials science ; Metallic coatings ; Metals. Metallurgy ; Ni–P–Al 2O 3 composite coatings ; Ni–P–W ternary coatings ; Physics ; Production techniques ; Surface treatment ; Surface treatments ; Ternary electroless composite coatings</subject><ispartof>Surface & coatings technology, 2007-11, Vol.202 (1), p.162-171</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-8a2e559c068d7a44f4e1afc4837c21eeaf5c4ceacec0149e0030f128e4fe0a2a3</citedby><cites>FETCH-LOGICAL-c373t-8a2e559c068d7a44f4e1afc4837c21eeaf5c4ceacec0149e0030f128e4fe0a2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2007.05.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19171343$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamdy, Abdel Salam</creatorcontrib><creatorcontrib>Shoeib, M.A.</creatorcontrib><creatorcontrib>Hady, H.</creatorcontrib><creatorcontrib>Abdel Salam, O.F.</creatorcontrib><title>Corrosion behavior of electroless Ni–P alloy coatings containing tungsten or nano-scattered alumina composite in 3.5% NaCl solution</title><title>Surface & coatings technology</title><description>The corrosion protection performance of electroless deposited nickel–phosphorus (Ni–P) alloy coatings containing tungsten (Ni–P–W) or nano-scattered alumina (Ni–P–Al
2O
3) composite coatings on low carbon steel was studied. The effect of heat treatment on the coating performance was also studied. The optimum conditions under which such coatings can provide good corrosion protection to the substrate were determined after two weeks of immersion in 3.5% NaCl solution. Electrochemical impedance spectroscopy (EIS) and polarization measurements have been used to evaluate the coating performance before and after heat treatment. The Ni–P–W coatings showed the highest surface resistance compared with Ni–P–Al
2O
3 and Ni–P. The surface resistance of Ni–P–W coatings was 12.0
×
10
4 Ω cm
2 which is about the double of the resistance showed by Ni–P–Al
2O
3 (7.00
×
10
4 Ω cm
2) and twenty times greater than the surface resistance of Ni–P (0.78
×
10
4 Ω cm
2). XRD analysis of non-heat-treated samples revealed formation of a protective tungsten phosphide phase. Heat treatment has an adverse effect on the corrosion protection performance of tungsten and alumina composite coatings. The surface resistance decreased sharply after heat treatment.</description><subject>Applied sciences</subject><subject>Corrosion</subject><subject>Corrosion environments</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Exact sciences and technology</subject><subject>Heat treatment</subject><subject>Low carbon steel</subject><subject>Materials science</subject><subject>Metallic coatings</subject><subject>Metals. Metallurgy</subject><subject>Ni–P–Al 2O 3 composite coatings</subject><subject>Ni–P–W ternary coatings</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Surface treatment</subject><subject>Surface treatments</subject><subject>Ternary electroless composite coatings</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkE1uFDEQRi0EEkPgCsibsOum3HaPu3egEX9SFLIga6vwlMEjjz3Y7kjZsckJuCEniYcJYsnKJev76qkeYy8F9ALE-vWuL0t2NmHtBwDdw9iDhEdsJSY9d1Iq_ZitYBh1N816eMqelbIDAKFntWJ3m5RzKj5F_pW-441PmSfHKZCtOQUqhV_63z9_XXEMId3yI8bHb6UNsaKPbeZ1aR-VIm_diDF1xWKtlGnbSsveR2zp_aFRKnEfuezHc36Jm8BLCktt7OfsicNQ6MXDe8au37_7svnYXXz-8Gnz9qKzUsvaTTjQOM4W1tNWo1JOkUBn1SS1HQQRutEqS2jJglAzQfPgxDCRcgQ4oDxjr057Dzn9WKhUs_fFUggYKS3FSJjVMCrZgutT0DY5JZMzh-z3mG-NAHO0bnbmr3VztG5gNI3WiucPBGwWgssYrS__2rPQQv4BvDnlqJ174ymbYj1FS1ufm3qzTf5_qHt-laAS</recordid><startdate>20071115</startdate><enddate>20071115</enddate><creator>Hamdy, Abdel Salam</creator><creator>Shoeib, M.A.</creator><creator>Hady, H.</creator><creator>Abdel Salam, O.F.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SE</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20071115</creationdate><title>Corrosion behavior of electroless Ni–P alloy coatings containing tungsten or nano-scattered alumina composite in 3.5% NaCl solution</title><author>Hamdy, Abdel Salam ; Shoeib, M.A. ; Hady, H. ; Abdel Salam, O.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-8a2e559c068d7a44f4e1afc4837c21eeaf5c4ceacec0149e0030f128e4fe0a2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Corrosion</topic><topic>Corrosion environments</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Exact sciences and technology</topic><topic>Heat treatment</topic><topic>Low carbon steel</topic><topic>Materials science</topic><topic>Metallic coatings</topic><topic>Metals. Metallurgy</topic><topic>Ni–P–Al 2O 3 composite coatings</topic><topic>Ni–P–W ternary coatings</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Surface treatment</topic><topic>Surface treatments</topic><topic>Ternary electroless composite coatings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamdy, Abdel Salam</creatorcontrib><creatorcontrib>Shoeib, M.A.</creatorcontrib><creatorcontrib>Hady, H.</creatorcontrib><creatorcontrib>Abdel Salam, O.F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamdy, Abdel Salam</au><au>Shoeib, M.A.</au><au>Hady, H.</au><au>Abdel Salam, O.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion behavior of electroless Ni–P alloy coatings containing tungsten or nano-scattered alumina composite in 3.5% NaCl solution</atitle><jtitle>Surface & coatings technology</jtitle><date>2007-11-15</date><risdate>2007</risdate><volume>202</volume><issue>1</issue><spage>162</spage><epage>171</epage><pages>162-171</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>The corrosion protection performance of electroless deposited nickel–phosphorus (Ni–P) alloy coatings containing tungsten (Ni–P–W) or nano-scattered alumina (Ni–P–Al
2O
3) composite coatings on low carbon steel was studied. The effect of heat treatment on the coating performance was also studied. The optimum conditions under which such coatings can provide good corrosion protection to the substrate were determined after two weeks of immersion in 3.5% NaCl solution. Electrochemical impedance spectroscopy (EIS) and polarization measurements have been used to evaluate the coating performance before and after heat treatment. The Ni–P–W coatings showed the highest surface resistance compared with Ni–P–Al
2O
3 and Ni–P. The surface resistance of Ni–P–W coatings was 12.0
×
10
4 Ω cm
2 which is about the double of the resistance showed by Ni–P–Al
2O
3 (7.00
×
10
4 Ω cm
2) and twenty times greater than the surface resistance of Ni–P (0.78
×
10
4 Ω cm
2). XRD analysis of non-heat-treated samples revealed formation of a protective tungsten phosphide phase. Heat treatment has an adverse effect on the corrosion protection performance of tungsten and alumina composite coatings. The surface resistance decreased sharply after heat treatment.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2007.05.030</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2007-11, Vol.202 (1), p.162-171 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_proquest_miscellaneous_30942543 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Corrosion Corrosion environments Cross-disciplinary physics: materials science rheology Electrochemical impedance spectroscopy Exact sciences and technology Heat treatment Low carbon steel Materials science Metallic coatings Metals. Metallurgy Ni–P–Al 2O 3 composite coatings Ni–P–W ternary coatings Physics Production techniques Surface treatment Surface treatments Ternary electroless composite coatings |
title | Corrosion behavior of electroless Ni–P alloy coatings containing tungsten or nano-scattered alumina composite in 3.5% NaCl solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20behavior%20of%20electroless%20Ni%E2%80%93P%20alloy%20coatings%20containing%20tungsten%20or%20nano-scattered%20alumina%20composite%20in%203.5%25%20NaCl%20solution&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Hamdy,%20Abdel%20Salam&rft.date=2007-11-15&rft.volume=202&rft.issue=1&rft.spage=162&rft.epage=171&rft.pages=162-171&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2007.05.030&rft_dat=%3Cproquest_cross%3E30942543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30942543&rft_id=info:pmid/&rft_els_id=S0257897207005361&rfr_iscdi=true |