Scanning amplicons with CRISPR‐Dx detects endangered amphibians in environmental DNA
More efficient methods for extensive biodiversity monitoring are required to support rapid measures to address the biodiversity crisis. While environmental DNA (eDNA) metabarcoding and quantitative PCR (qPCR) methods offer advantages over traditional monitoring approaches, their large‐scale applicat...
Gespeichert in:
Veröffentlicht in: | Molecular ecology resources 2024-11, Vol.24 (8), p.e14009-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | e14009 |
container_title | Molecular ecology resources |
container_volume | 24 |
creator | Leugger, Flurin Schmidlin, Michel Lüthi, Martina Kontarakis, Zacharias Pellissier, Loïc |
description | More efficient methods for extensive biodiversity monitoring are required to support rapid measures to address the biodiversity crisis. While environmental DNA (eDNA) metabarcoding and quantitative PCR (qPCR) methods offer advantages over traditional monitoring approaches, their large‐scale application is limited by the time and labour required for developing assays and/or for analysis. CRISPR (clustered regularly interspaced short palindromic repeats) diagnostic technologies (Dx) may overcome some of these limitations, but they have been used solely with species‐specific primers, restricting their versatility for biodiversity monitoring. Here, we demonstrate the feasibility of designing species‐specific CRISPR‐Dx assays in silico within a short metabarcoding fragment using a general primer set, a methodology we term ‘ampliscanning’, for 18 of the 22 amphibian species in Switzerland. We sub‐selected nine species, including three classified as regionally endangered, to test the methodology using eDNA sampled from ponds at nine sites. We compared the ampliscanning detections to data from traditional monitoring at these sites. Ampliscanning was successful at detecting target species with different prevalences across the landscape. With only one visit, we detected more species per site than three traditional monitoring visits (visual and acoustic detections by trained experts), in particular more elusive species and previously undocumented but expected populations. Ampliscanning detected 25 species/site combinations compared to 12 with traditional monitoring. Sensitivity analyses showed that larger numbers of field visits and PCR replicates are more important for reliable detection than many technical replicates at the CRISPR‐Dx assay level. Given the reduced sampling and analysis effort, our results highlight the benefits of eDNA and CRISPR‐Dx combined with universal primers for large‐scale monitoring of multiple endangered species across landscapes to inform conservation measures. |
doi_str_mv | 10.1111/1755-0998.14009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3094045677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094045677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2559-b387451fd391c20836542e8a71c3d46b03ac036330c385d269575a19b68128a23</originalsourceid><addsrcrecordid>eNqFkE1PwyAYgInR-H32Zpp48VIHpVA4ms2PJXOaTY03QilzLC2dpVN38yf4G_0lUjt38CIXCDw8efMAcITgGfKrgxJCQsg5O0MxhHwD7K5vNtdn9rQD9pybQUghT-JtsIM5IhGlaBc8jpW01tjnQBbz3KjSuuDN1NOgO-qP70ZfH5-99yDTtVa1C7TNpH3Wlc4aempSIz1urH94NVVpC21rmQe94fkB2JrI3OnD1b4PHi4v7rvX4eD2qt89H4QqIoSHKWZJTNAk8wOpCDJMSRxpJhOkcBbTFGKpIKYYQ4UZySLKSUIk4illKGIywvvgtPXOq_JloV0tCuOUznNpdblwAkMew5jQJPHoyR90Vi4q66cT2KfkkMGkEXZaSlWlc5WeiHllClktBYKiSS6aqKIJLH6S-x_HK-8iLXS25n8be4C0wJvJ9fI_n7i5GLbib_X3iRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111908072</pqid></control><display><type>article</type><title>Scanning amplicons with CRISPR‐Dx detects endangered amphibians in environmental DNA</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Leugger, Flurin ; Schmidlin, Michel ; Lüthi, Martina ; Kontarakis, Zacharias ; Pellissier, Loïc</creator><creatorcontrib>Leugger, Flurin ; Schmidlin, Michel ; Lüthi, Martina ; Kontarakis, Zacharias ; Pellissier, Loïc</creatorcontrib><description>More efficient methods for extensive biodiversity monitoring are required to support rapid measures to address the biodiversity crisis. While environmental DNA (eDNA) metabarcoding and quantitative PCR (qPCR) methods offer advantages over traditional monitoring approaches, their large‐scale application is limited by the time and labour required for developing assays and/or for analysis. CRISPR (clustered regularly interspaced short palindromic repeats) diagnostic technologies (Dx) may overcome some of these limitations, but they have been used solely with species‐specific primers, restricting their versatility for biodiversity monitoring. Here, we demonstrate the feasibility of designing species‐specific CRISPR‐Dx assays in silico within a short metabarcoding fragment using a general primer set, a methodology we term ‘ampliscanning’, for 18 of the 22 amphibian species in Switzerland. We sub‐selected nine species, including three classified as regionally endangered, to test the methodology using eDNA sampled from ponds at nine sites. We compared the ampliscanning detections to data from traditional monitoring at these sites. Ampliscanning was successful at detecting target species with different prevalences across the landscape. With only one visit, we detected more species per site than three traditional monitoring visits (visual and acoustic detections by trained experts), in particular more elusive species and previously undocumented but expected populations. Ampliscanning detected 25 species/site combinations compared to 12 with traditional monitoring. Sensitivity analyses showed that larger numbers of field visits and PCR replicates are more important for reliable detection than many technical replicates at the CRISPR‐Dx assay level. Given the reduced sampling and analysis effort, our results highlight the benefits of eDNA and CRISPR‐Dx combined with universal primers for large‐scale monitoring of multiple endangered species across landscapes to inform conservation measures.</description><identifier>ISSN: 1755-098X</identifier><identifier>ISSN: 1755-0998</identifier><identifier>EISSN: 1755-0998</identifier><identifier>DOI: 10.1111/1755-0998.14009</identifier><identifier>PMID: 39152661</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Amphibians ; Amphibians - classification ; Amphibians - genetics ; Animals ; Assaying ; Biodiversity ; biodiversity monitoring ; Cas13 ; Clustered Regularly Interspaced Short Palindromic Repeats - genetics ; conservation ; CRISPR ; CRISPR‐Dx ; DNA barcoding ; DNA Barcoding, Taxonomic - methods ; DNA, Environmental - genetics ; Endangered & extinct species ; endangered amphibians ; Endangered animals ; Endangered Species ; Environmental DNA ; Environmental monitoring ; Landscape preservation ; Metagenomics - methods ; Monitoring ; Polymerase chain reaction ; Ponds ; Reptiles & amphibians ; Sensitivity analysis ; Switzerland ; Target detection ; Wildlife conservation</subject><ispartof>Molecular ecology resources, 2024-11, Vol.24 (8), p.e14009-n/a</ispartof><rights>2024 The Author(s). published by John Wiley & Sons Ltd.</rights><rights>2024 The Author(s). Molecular Ecology Resources published by John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2559-b387451fd391c20836542e8a71c3d46b03ac036330c385d269575a19b68128a23</cites><orcidid>0000-0002-2289-8259 ; 0000-0001-9027-6892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1755-0998.14009$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1755-0998.14009$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39152661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leugger, Flurin</creatorcontrib><creatorcontrib>Schmidlin, Michel</creatorcontrib><creatorcontrib>Lüthi, Martina</creatorcontrib><creatorcontrib>Kontarakis, Zacharias</creatorcontrib><creatorcontrib>Pellissier, Loïc</creatorcontrib><title>Scanning amplicons with CRISPR‐Dx detects endangered amphibians in environmental DNA</title><title>Molecular ecology resources</title><addtitle>Mol Ecol Resour</addtitle><description>More efficient methods for extensive biodiversity monitoring are required to support rapid measures to address the biodiversity crisis. While environmental DNA (eDNA) metabarcoding and quantitative PCR (qPCR) methods offer advantages over traditional monitoring approaches, their large‐scale application is limited by the time and labour required for developing assays and/or for analysis. CRISPR (clustered regularly interspaced short palindromic repeats) diagnostic technologies (Dx) may overcome some of these limitations, but they have been used solely with species‐specific primers, restricting their versatility for biodiversity monitoring. Here, we demonstrate the feasibility of designing species‐specific CRISPR‐Dx assays in silico within a short metabarcoding fragment using a general primer set, a methodology we term ‘ampliscanning’, for 18 of the 22 amphibian species in Switzerland. We sub‐selected nine species, including three classified as regionally endangered, to test the methodology using eDNA sampled from ponds at nine sites. We compared the ampliscanning detections to data from traditional monitoring at these sites. Ampliscanning was successful at detecting target species with different prevalences across the landscape. With only one visit, we detected more species per site than three traditional monitoring visits (visual and acoustic detections by trained experts), in particular more elusive species and previously undocumented but expected populations. Ampliscanning detected 25 species/site combinations compared to 12 with traditional monitoring. Sensitivity analyses showed that larger numbers of field visits and PCR replicates are more important for reliable detection than many technical replicates at the CRISPR‐Dx assay level. Given the reduced sampling and analysis effort, our results highlight the benefits of eDNA and CRISPR‐Dx combined with universal primers for large‐scale monitoring of multiple endangered species across landscapes to inform conservation measures.</description><subject>Amphibians</subject><subject>Amphibians - classification</subject><subject>Amphibians - genetics</subject><subject>Animals</subject><subject>Assaying</subject><subject>Biodiversity</subject><subject>biodiversity monitoring</subject><subject>Cas13</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats - genetics</subject><subject>conservation</subject><subject>CRISPR</subject><subject>CRISPR‐Dx</subject><subject>DNA barcoding</subject><subject>DNA Barcoding, Taxonomic - methods</subject><subject>DNA, Environmental - genetics</subject><subject>Endangered & extinct species</subject><subject>endangered amphibians</subject><subject>Endangered animals</subject><subject>Endangered Species</subject><subject>Environmental DNA</subject><subject>Environmental monitoring</subject><subject>Landscape preservation</subject><subject>Metagenomics - methods</subject><subject>Monitoring</subject><subject>Polymerase chain reaction</subject><subject>Ponds</subject><subject>Reptiles & amphibians</subject><subject>Sensitivity analysis</subject><subject>Switzerland</subject><subject>Target detection</subject><subject>Wildlife conservation</subject><issn>1755-098X</issn><issn>1755-0998</issn><issn>1755-0998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkE1PwyAYgInR-H32Zpp48VIHpVA4ms2PJXOaTY03QilzLC2dpVN38yf4G_0lUjt38CIXCDw8efMAcITgGfKrgxJCQsg5O0MxhHwD7K5vNtdn9rQD9pybQUghT-JtsIM5IhGlaBc8jpW01tjnQBbz3KjSuuDN1NOgO-qP70ZfH5-99yDTtVa1C7TNpH3Wlc4aempSIz1urH94NVVpC21rmQe94fkB2JrI3OnD1b4PHi4v7rvX4eD2qt89H4QqIoSHKWZJTNAk8wOpCDJMSRxpJhOkcBbTFGKpIKYYQ4UZySLKSUIk4illKGIywvvgtPXOq_JloV0tCuOUznNpdblwAkMew5jQJPHoyR90Vi4q66cT2KfkkMGkEXZaSlWlc5WeiHllClktBYKiSS6aqKIJLH6S-x_HK-8iLXS25n8be4C0wJvJ9fI_n7i5GLbib_X3iRE</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Leugger, Flurin</creator><creator>Schmidlin, Michel</creator><creator>Lüthi, Martina</creator><creator>Kontarakis, Zacharias</creator><creator>Pellissier, Loïc</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2289-8259</orcidid><orcidid>https://orcid.org/0000-0001-9027-6892</orcidid></search><sort><creationdate>202411</creationdate><title>Scanning amplicons with CRISPR‐Dx detects endangered amphibians in environmental DNA</title><author>Leugger, Flurin ; Schmidlin, Michel ; Lüthi, Martina ; Kontarakis, Zacharias ; Pellissier, Loïc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2559-b387451fd391c20836542e8a71c3d46b03ac036330c385d269575a19b68128a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amphibians</topic><topic>Amphibians - classification</topic><topic>Amphibians - genetics</topic><topic>Animals</topic><topic>Assaying</topic><topic>Biodiversity</topic><topic>biodiversity monitoring</topic><topic>Cas13</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats - genetics</topic><topic>conservation</topic><topic>CRISPR</topic><topic>CRISPR‐Dx</topic><topic>DNA barcoding</topic><topic>DNA Barcoding, Taxonomic - methods</topic><topic>DNA, Environmental - genetics</topic><topic>Endangered & extinct species</topic><topic>endangered amphibians</topic><topic>Endangered animals</topic><topic>Endangered Species</topic><topic>Environmental DNA</topic><topic>Environmental monitoring</topic><topic>Landscape preservation</topic><topic>Metagenomics - methods</topic><topic>Monitoring</topic><topic>Polymerase chain reaction</topic><topic>Ponds</topic><topic>Reptiles & amphibians</topic><topic>Sensitivity analysis</topic><topic>Switzerland</topic><topic>Target detection</topic><topic>Wildlife conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leugger, Flurin</creatorcontrib><creatorcontrib>Schmidlin, Michel</creatorcontrib><creatorcontrib>Lüthi, Martina</creatorcontrib><creatorcontrib>Kontarakis, Zacharias</creatorcontrib><creatorcontrib>Pellissier, Loïc</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leugger, Flurin</au><au>Schmidlin, Michel</au><au>Lüthi, Martina</au><au>Kontarakis, Zacharias</au><au>Pellissier, Loïc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scanning amplicons with CRISPR‐Dx detects endangered amphibians in environmental DNA</atitle><jtitle>Molecular ecology resources</jtitle><addtitle>Mol Ecol Resour</addtitle><date>2024-11</date><risdate>2024</risdate><volume>24</volume><issue>8</issue><spage>e14009</spage><epage>n/a</epage><pages>e14009-n/a</pages><issn>1755-098X</issn><issn>1755-0998</issn><eissn>1755-0998</eissn><abstract>More efficient methods for extensive biodiversity monitoring are required to support rapid measures to address the biodiversity crisis. While environmental DNA (eDNA) metabarcoding and quantitative PCR (qPCR) methods offer advantages over traditional monitoring approaches, their large‐scale application is limited by the time and labour required for developing assays and/or for analysis. CRISPR (clustered regularly interspaced short palindromic repeats) diagnostic technologies (Dx) may overcome some of these limitations, but they have been used solely with species‐specific primers, restricting their versatility for biodiversity monitoring. Here, we demonstrate the feasibility of designing species‐specific CRISPR‐Dx assays in silico within a short metabarcoding fragment using a general primer set, a methodology we term ‘ampliscanning’, for 18 of the 22 amphibian species in Switzerland. We sub‐selected nine species, including three classified as regionally endangered, to test the methodology using eDNA sampled from ponds at nine sites. We compared the ampliscanning detections to data from traditional monitoring at these sites. Ampliscanning was successful at detecting target species with different prevalences across the landscape. With only one visit, we detected more species per site than three traditional monitoring visits (visual and acoustic detections by trained experts), in particular more elusive species and previously undocumented but expected populations. Ampliscanning detected 25 species/site combinations compared to 12 with traditional monitoring. Sensitivity analyses showed that larger numbers of field visits and PCR replicates are more important for reliable detection than many technical replicates at the CRISPR‐Dx assay level. Given the reduced sampling and analysis effort, our results highlight the benefits of eDNA and CRISPR‐Dx combined with universal primers for large‐scale monitoring of multiple endangered species across landscapes to inform conservation measures.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39152661</pmid><doi>10.1111/1755-0998.14009</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2289-8259</orcidid><orcidid>https://orcid.org/0000-0001-9027-6892</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-098X |
ispartof | Molecular ecology resources, 2024-11, Vol.24 (8), p.e14009-n/a |
issn | 1755-098X 1755-0998 1755-0998 |
language | eng |
recordid | cdi_proquest_miscellaneous_3094045677 |
source | MEDLINE; Wiley Journals |
subjects | Amphibians Amphibians - classification Amphibians - genetics Animals Assaying Biodiversity biodiversity monitoring Cas13 Clustered Regularly Interspaced Short Palindromic Repeats - genetics conservation CRISPR CRISPR‐Dx DNA barcoding DNA Barcoding, Taxonomic - methods DNA, Environmental - genetics Endangered & extinct species endangered amphibians Endangered animals Endangered Species Environmental DNA Environmental monitoring Landscape preservation Metagenomics - methods Monitoring Polymerase chain reaction Ponds Reptiles & amphibians Sensitivity analysis Switzerland Target detection Wildlife conservation |
title | Scanning amplicons with CRISPR‐Dx detects endangered amphibians in environmental DNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scanning%20amplicons%20with%20CRISPR%E2%80%90Dx%20detects%20endangered%20amphibians%20in%20environmental%20DNA&rft.jtitle=Molecular%20ecology%20resources&rft.au=Leugger,%20Flurin&rft.date=2024-11&rft.volume=24&rft.issue=8&rft.spage=e14009&rft.epage=n/a&rft.pages=e14009-n/a&rft.issn=1755-098X&rft.eissn=1755-0998&rft_id=info:doi/10.1111/1755-0998.14009&rft_dat=%3Cproquest_cross%3E3094045677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111908072&rft_id=info:pmid/39152661&rfr_iscdi=true |