High‐throughput screen to identify and optimize NOT gate receptors for cell therapy
Logic‐gated engineered cells are an emerging therapeutic modality that can take advantage of molecular profiles to focus medical interventions on specific tissues in the body. However, the increased complexity of these engineered systems may pose a challenge for prediction and optimization of their...
Gespeichert in:
Veröffentlicht in: | Cytometry. Part A 2024-10, Vol.105 (10), p.741-751 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 751 |
---|---|
container_issue | 10 |
container_start_page | 741 |
container_title | Cytometry. Part A |
container_volume | 105 |
creator | Martire, S. Wang, X. McElvain, M. Suryawanshi, V. Gill, T. DiAndreth, B. Lee, W. Riley, T. P. Xu, H. Netirojjanakul, C. Kamb, A. |
description | Logic‐gated engineered cells are an emerging therapeutic modality that can take advantage of molecular profiles to focus medical interventions on specific tissues in the body. However, the increased complexity of these engineered systems may pose a challenge for prediction and optimization of their behavior. Here we describe the design and testing of a flow cytometry‐based screening system to rapidly select functional inhibitory receptors from a pooled library of candidate constructs. In proof‐of‐concept experiments, this approach identifies inhibitory receptors that can operate as NOT gates when paired with activating receptors. The method may be used to generate large datasets to train machine learning models to better predict and optimize the function of logic‐gated cell therapeutics. |
doi_str_mv | 10.1002/cyto.a.24893 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3094045270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094045270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2893-ad145327defa98aec0ad84c5083817f79ba6fcef5b5bb95a71887ee1cb5496b33</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EglLYmJElFgZa_NskY1UBRUJ0KQOT5Tg3bVAaB9sRChOPwDPyJKS0dGBg8h2Ojj4fhM4oGVJC2LVpgx3qIRNxwvdQj0rJBiLhZH93M3aEjr1_IYRLwtkhOuIJlSyipIeepsVi-fXxGZbONotl3QTsjQOocLC4yKAKRd5iXWXY1qFYFe-AH2dzvNABsAMDdbDO49w6bKAscViC03V7gg5yXXo43b599HR7M59MBw-zu_vJ-GFgWLd2oDMqJGdRBrlOYg2G6CwWRpKYxzTKoyTVo9xALlOZponUEY3jCICaVIpklHLeR5cbb-3sawM-qFXh10N0BbbxipNEENF9lXToxR_0xTau6tYpTmlE2EiwtfBqQxlnvXeQq9oVK-1aRYla51br3Eqrn9wdfr6VNukKsh3827cDxAZ4K0po_5WpyfN8Nt54vwFwh413</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117026423</pqid></control><display><type>article</type><title>High‐throughput screen to identify and optimize NOT gate receptors for cell therapy</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Martire, S. ; Wang, X. ; McElvain, M. ; Suryawanshi, V. ; Gill, T. ; DiAndreth, B. ; Lee, W. ; Riley, T. P. ; Xu, H. ; Netirojjanakul, C. ; Kamb, A.</creator><creatorcontrib>Martire, S. ; Wang, X. ; McElvain, M. ; Suryawanshi, V. ; Gill, T. ; DiAndreth, B. ; Lee, W. ; Riley, T. P. ; Xu, H. ; Netirojjanakul, C. ; Kamb, A.</creatorcontrib><description>Logic‐gated engineered cells are an emerging therapeutic modality that can take advantage of molecular profiles to focus medical interventions on specific tissues in the body. However, the increased complexity of these engineered systems may pose a challenge for prediction and optimization of their behavior. Here we describe the design and testing of a flow cytometry‐based screening system to rapidly select functional inhibitory receptors from a pooled library of candidate constructs. In proof‐of‐concept experiments, this approach identifies inhibitory receptors that can operate as NOT gates when paired with activating receptors. The method may be used to generate large datasets to train machine learning models to better predict and optimize the function of logic‐gated cell therapeutics.</description><identifier>ISSN: 1552-4922</identifier><identifier>ISSN: 1552-4930</identifier><identifier>EISSN: 1552-4930</identifier><identifier>DOI: 10.1002/cyto.a.24893</identifier><identifier>PMID: 39152710</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Cell culture ; Cell therapy ; Cell- and Tissue-Based Therapy - methods ; Concept learning ; Design optimization ; FACS ; Flow cytometry ; Flow Cytometry - methods ; function‐based screen ; High-Throughput Screening Assays - methods ; Humans ; ITIM ; logic gate ; Machine Learning ; NOT gate ; Receptor mechanisms ; Receptors ; Tmod</subject><ispartof>Cytometry. Part A, 2024-10, Vol.105 (10), p.741-751</ispartof><rights>2024 A2 Biotherapeutics. published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.</rights><rights>2024 A2 Biotherapeutics. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2893-ad145327defa98aec0ad84c5083817f79ba6fcef5b5bb95a71887ee1cb5496b33</cites><orcidid>0000-0002-1570-3476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcyto.a.24893$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcyto.a.24893$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39152710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martire, S.</creatorcontrib><creatorcontrib>Wang, X.</creatorcontrib><creatorcontrib>McElvain, M.</creatorcontrib><creatorcontrib>Suryawanshi, V.</creatorcontrib><creatorcontrib>Gill, T.</creatorcontrib><creatorcontrib>DiAndreth, B.</creatorcontrib><creatorcontrib>Lee, W.</creatorcontrib><creatorcontrib>Riley, T. P.</creatorcontrib><creatorcontrib>Xu, H.</creatorcontrib><creatorcontrib>Netirojjanakul, C.</creatorcontrib><creatorcontrib>Kamb, A.</creatorcontrib><title>High‐throughput screen to identify and optimize NOT gate receptors for cell therapy</title><title>Cytometry. Part A</title><addtitle>Cytometry A</addtitle><description>Logic‐gated engineered cells are an emerging therapeutic modality that can take advantage of molecular profiles to focus medical interventions on specific tissues in the body. However, the increased complexity of these engineered systems may pose a challenge for prediction and optimization of their behavior. Here we describe the design and testing of a flow cytometry‐based screening system to rapidly select functional inhibitory receptors from a pooled library of candidate constructs. In proof‐of‐concept experiments, this approach identifies inhibitory receptors that can operate as NOT gates when paired with activating receptors. The method may be used to generate large datasets to train machine learning models to better predict and optimize the function of logic‐gated cell therapeutics.</description><subject>Cell culture</subject><subject>Cell therapy</subject><subject>Cell- and Tissue-Based Therapy - methods</subject><subject>Concept learning</subject><subject>Design optimization</subject><subject>FACS</subject><subject>Flow cytometry</subject><subject>Flow Cytometry - methods</subject><subject>function‐based screen</subject><subject>High-Throughput Screening Assays - methods</subject><subject>Humans</subject><subject>ITIM</subject><subject>logic gate</subject><subject>Machine Learning</subject><subject>NOT gate</subject><subject>Receptor mechanisms</subject><subject>Receptors</subject><subject>Tmod</subject><issn>1552-4922</issn><issn>1552-4930</issn><issn>1552-4930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp9kL1OwzAURi0EglLYmJElFgZa_NskY1UBRUJ0KQOT5Tg3bVAaB9sRChOPwDPyJKS0dGBg8h2Ojj4fhM4oGVJC2LVpgx3qIRNxwvdQj0rJBiLhZH93M3aEjr1_IYRLwtkhOuIJlSyipIeepsVi-fXxGZbONotl3QTsjQOocLC4yKAKRd5iXWXY1qFYFe-AH2dzvNABsAMDdbDO49w6bKAscViC03V7gg5yXXo43b599HR7M59MBw-zu_vJ-GFgWLd2oDMqJGdRBrlOYg2G6CwWRpKYxzTKoyTVo9xALlOZponUEY3jCICaVIpklHLeR5cbb-3sawM-qFXh10N0BbbxipNEENF9lXToxR_0xTau6tYpTmlE2EiwtfBqQxlnvXeQq9oVK-1aRYla51br3Eqrn9wdfr6VNukKsh3827cDxAZ4K0po_5WpyfN8Nt54vwFwh413</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Martire, S.</creator><creator>Wang, X.</creator><creator>McElvain, M.</creator><creator>Suryawanshi, V.</creator><creator>Gill, T.</creator><creator>DiAndreth, B.</creator><creator>Lee, W.</creator><creator>Riley, T. P.</creator><creator>Xu, H.</creator><creator>Netirojjanakul, C.</creator><creator>Kamb, A.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1570-3476</orcidid></search><sort><creationdate>202410</creationdate><title>High‐throughput screen to identify and optimize NOT gate receptors for cell therapy</title><author>Martire, S. ; Wang, X. ; McElvain, M. ; Suryawanshi, V. ; Gill, T. ; DiAndreth, B. ; Lee, W. ; Riley, T. P. ; Xu, H. ; Netirojjanakul, C. ; Kamb, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2893-ad145327defa98aec0ad84c5083817f79ba6fcef5b5bb95a71887ee1cb5496b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cell culture</topic><topic>Cell therapy</topic><topic>Cell- and Tissue-Based Therapy - methods</topic><topic>Concept learning</topic><topic>Design optimization</topic><topic>FACS</topic><topic>Flow cytometry</topic><topic>Flow Cytometry - methods</topic><topic>function‐based screen</topic><topic>High-Throughput Screening Assays - methods</topic><topic>Humans</topic><topic>ITIM</topic><topic>logic gate</topic><topic>Machine Learning</topic><topic>NOT gate</topic><topic>Receptor mechanisms</topic><topic>Receptors</topic><topic>Tmod</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martire, S.</creatorcontrib><creatorcontrib>Wang, X.</creatorcontrib><creatorcontrib>McElvain, M.</creatorcontrib><creatorcontrib>Suryawanshi, V.</creatorcontrib><creatorcontrib>Gill, T.</creatorcontrib><creatorcontrib>DiAndreth, B.</creatorcontrib><creatorcontrib>Lee, W.</creatorcontrib><creatorcontrib>Riley, T. P.</creatorcontrib><creatorcontrib>Xu, H.</creatorcontrib><creatorcontrib>Netirojjanakul, C.</creatorcontrib><creatorcontrib>Kamb, A.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cytometry. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martire, S.</au><au>Wang, X.</au><au>McElvain, M.</au><au>Suryawanshi, V.</au><au>Gill, T.</au><au>DiAndreth, B.</au><au>Lee, W.</au><au>Riley, T. P.</au><au>Xu, H.</au><au>Netirojjanakul, C.</au><au>Kamb, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐throughput screen to identify and optimize NOT gate receptors for cell therapy</atitle><jtitle>Cytometry. Part A</jtitle><addtitle>Cytometry A</addtitle><date>2024-10</date><risdate>2024</risdate><volume>105</volume><issue>10</issue><spage>741</spage><epage>751</epage><pages>741-751</pages><issn>1552-4922</issn><issn>1552-4930</issn><eissn>1552-4930</eissn><abstract>Logic‐gated engineered cells are an emerging therapeutic modality that can take advantage of molecular profiles to focus medical interventions on specific tissues in the body. However, the increased complexity of these engineered systems may pose a challenge for prediction and optimization of their behavior. Here we describe the design and testing of a flow cytometry‐based screening system to rapidly select functional inhibitory receptors from a pooled library of candidate constructs. In proof‐of‐concept experiments, this approach identifies inhibitory receptors that can operate as NOT gates when paired with activating receptors. The method may be used to generate large datasets to train machine learning models to better predict and optimize the function of logic‐gated cell therapeutics.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>39152710</pmid><doi>10.1002/cyto.a.24893</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1570-3476</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4922 |
ispartof | Cytometry. Part A, 2024-10, Vol.105 (10), p.741-751 |
issn | 1552-4922 1552-4930 1552-4930 |
language | eng |
recordid | cdi_proquest_miscellaneous_3094045270 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Cell culture Cell therapy Cell- and Tissue-Based Therapy - methods Concept learning Design optimization FACS Flow cytometry Flow Cytometry - methods function‐based screen High-Throughput Screening Assays - methods Humans ITIM logic gate Machine Learning NOT gate Receptor mechanisms Receptors Tmod |
title | High‐throughput screen to identify and optimize NOT gate receptors for cell therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A43%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90throughput%20screen%20to%20identify%20and%20optimize%20NOT%20gate%20receptors%20for%20cell%20therapy&rft.jtitle=Cytometry.%20Part%20A&rft.au=Martire,%20S.&rft.date=2024-10&rft.volume=105&rft.issue=10&rft.spage=741&rft.epage=751&rft.pages=741-751&rft.issn=1552-4922&rft.eissn=1552-4930&rft_id=info:doi/10.1002/cyto.a.24893&rft_dat=%3Cproquest_cross%3E3094045270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117026423&rft_id=info:pmid/39152710&rfr_iscdi=true |