Dual-element substitution induced integrated defect structure to suppress voltage decay and capacity fading of Li-rich Mn-based cathode

Figure. Dual-element substitution induced integrated defect structure to suppress voltage decay and capacity fading of Li-rich Mn-based cathode. [Display omitted] •The integrated defects are constructed in Li-rich cathodes by Na2SnO3 modification.•The modification improves the cycling stability and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2025-01, Vol.677 (Pt B), p.377-386
Hauptverfasser: Zhang, Zhigui, Kou, Pengzu, Chen, Yu, Zheng, Runguo, Wang, Zhiyuan, Sun, Hongyu, Liu, Yanguo, Wang, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 386
container_issue Pt B
container_start_page 377
container_title Journal of colloid and interface science
container_volume 677
creator Zhang, Zhigui
Kou, Pengzu
Chen, Yu
Zheng, Runguo
Wang, Zhiyuan
Sun, Hongyu
Liu, Yanguo
Wang, Dan
description Figure. Dual-element substitution induced integrated defect structure to suppress voltage decay and capacity fading of Li-rich Mn-based cathode. [Display omitted] •The integrated defects are constructed in Li-rich cathodes by Na2SnO3 modification.•The modification improves the cycling stability and suppresses the voltage decay.•The mechanism of enhanced performance by Na2SnO3 modification is revealed. Li-rich manganese-based oxide (LRMO) is considered one of the most promising cathode materials for next-generation lithium-ion batteries due to its high energy density. However, many issues need to be addressed before its large-scale commercialization, including significant voltage decay and capacity fading. Herein, a Sn4+/Na+ co-doping induced integrated defect structure (oxygen vacancies, stacking faults, and surface spinel phase) strategy is proposed to suppress the voltage decay and enhance the cycling performance of LRMO. The integrated surface defect structures have significantly favorable effects on the LRMO, where the oxygen vacancies remove surface labile oxygen and suppress surface oxygen release, the induced stacking faults alleviate the stress accumulation during cycling, the surface spinel phase promotes the Li+ diffusion and prevents the outward migration of cations, and the co-doped Sn4+/Na+ stabilize the layered structure. As a result, the modified sample Na2SnO3-1 % (NSO-1) achieves excellent cycling performance (capacity of 207 mAh/g and capacity retention of 96.71 % after 100 cycles at 0.5C) and a smaller voltage decay (less than 1.5 mV per cycle) compared with the unmodified LRMO. This work provides a new valuable strategy to suppress capacity fading and voltage decay of LRMO through dual-element substitution induced surface defect engineering.
doi_str_mv 10.1016/j.jcis.2024.08.078
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3094045083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724018605</els_id><sourcerecordid>3153812837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-5925b5d89f6e7420eb6ff02655dd575b789356c3dcfaf4df1d4a90f558c072183</originalsourceid><addsrcrecordid>eNqFkb2O1DAUhS0EYoeFF6BALmkyXDtxbEs0aPnZlQbRQG059vWsR5kk2M5K8wS8Nh7NQgnVucV3TnE_Ql4z2DJg_bvD9uBi3nLg3RbUFqR6QjYMtGgkg_Yp2QBw1mip5RV5kfMBgDEh9HNy1WomWt6xDfn1cbVjgyMecSo0r0MusawlzhONk18d-poF98mWenoM6CpW0urKmpCWuXaWJWHO9GEei91jhZw9UTt56uxiXSwnGqyP057Oge5ik6K7p1-nZrAZz0y5nz2-JM-CHTO-esxr8uPzp-83t83u25e7mw-7xnEJpRGai0F4pUOPsuOAQx8C8F4I74UUg1S6Fb1rvQs2dD4w31kNQQjlQHKm2mvy9rK7pPnnirmYY8wOx9FOOK_ZtPUxinHVyv-joDvoBKi2ovyCujTnnDCYJcWjTSfDwJxdmYM5uzJnVwaUqa5q6c3j_joc0f-t_JFTgfcXAOtDHiImk13EqTqJqWowfo7_2v8N_6GnPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094045083</pqid></control><display><type>article</type><title>Dual-element substitution induced integrated defect structure to suppress voltage decay and capacity fading of Li-rich Mn-based cathode</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Zhigui ; Kou, Pengzu ; Chen, Yu ; Zheng, Runguo ; Wang, Zhiyuan ; Sun, Hongyu ; Liu, Yanguo ; Wang, Dan</creator><creatorcontrib>Zhang, Zhigui ; Kou, Pengzu ; Chen, Yu ; Zheng, Runguo ; Wang, Zhiyuan ; Sun, Hongyu ; Liu, Yanguo ; Wang, Dan</creatorcontrib><description>Figure. Dual-element substitution induced integrated defect structure to suppress voltage decay and capacity fading of Li-rich Mn-based cathode. [Display omitted] •The integrated defects are constructed in Li-rich cathodes by Na2SnO3 modification.•The modification improves the cycling stability and suppresses the voltage decay.•The mechanism of enhanced performance by Na2SnO3 modification is revealed. Li-rich manganese-based oxide (LRMO) is considered one of the most promising cathode materials for next-generation lithium-ion batteries due to its high energy density. However, many issues need to be addressed before its large-scale commercialization, including significant voltage decay and capacity fading. Herein, a Sn4+/Na+ co-doping induced integrated defect structure (oxygen vacancies, stacking faults, and surface spinel phase) strategy is proposed to suppress the voltage decay and enhance the cycling performance of LRMO. The integrated surface defect structures have significantly favorable effects on the LRMO, where the oxygen vacancies remove surface labile oxygen and suppress surface oxygen release, the induced stacking faults alleviate the stress accumulation during cycling, the surface spinel phase promotes the Li+ diffusion and prevents the outward migration of cations, and the co-doped Sn4+/Na+ stabilize the layered structure. As a result, the modified sample Na2SnO3-1 % (NSO-1) achieves excellent cycling performance (capacity of 207 mAh/g and capacity retention of 96.71 % after 100 cycles at 0.5C) and a smaller voltage decay (less than 1.5 mV per cycle) compared with the unmodified LRMO. This work provides a new valuable strategy to suppress capacity fading and voltage decay of LRMO through dual-element substitution induced surface defect engineering.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.08.078</identifier><identifier>PMID: 39153241</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Capacity fading ; cathodes ; commercialization ; electric potential difference ; energy density ; Integrated defect ; Li-rich manganese-based oxide ; oxygen ; Voltage decay</subject><ispartof>Journal of colloid and interface science, 2025-01, Vol.677 (Pt B), p.377-386</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-5925b5d89f6e7420eb6ff02655dd575b789356c3dcfaf4df1d4a90f558c072183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2024.08.078$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39153241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhigui</creatorcontrib><creatorcontrib>Kou, Pengzu</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Zheng, Runguo</creatorcontrib><creatorcontrib>Wang, Zhiyuan</creatorcontrib><creatorcontrib>Sun, Hongyu</creatorcontrib><creatorcontrib>Liu, Yanguo</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><title>Dual-element substitution induced integrated defect structure to suppress voltage decay and capacity fading of Li-rich Mn-based cathode</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>Figure. Dual-element substitution induced integrated defect structure to suppress voltage decay and capacity fading of Li-rich Mn-based cathode. [Display omitted] •The integrated defects are constructed in Li-rich cathodes by Na2SnO3 modification.•The modification improves the cycling stability and suppresses the voltage decay.•The mechanism of enhanced performance by Na2SnO3 modification is revealed. Li-rich manganese-based oxide (LRMO) is considered one of the most promising cathode materials for next-generation lithium-ion batteries due to its high energy density. However, many issues need to be addressed before its large-scale commercialization, including significant voltage decay and capacity fading. Herein, a Sn4+/Na+ co-doping induced integrated defect structure (oxygen vacancies, stacking faults, and surface spinel phase) strategy is proposed to suppress the voltage decay and enhance the cycling performance of LRMO. The integrated surface defect structures have significantly favorable effects on the LRMO, where the oxygen vacancies remove surface labile oxygen and suppress surface oxygen release, the induced stacking faults alleviate the stress accumulation during cycling, the surface spinel phase promotes the Li+ diffusion and prevents the outward migration of cations, and the co-doped Sn4+/Na+ stabilize the layered structure. As a result, the modified sample Na2SnO3-1 % (NSO-1) achieves excellent cycling performance (capacity of 207 mAh/g and capacity retention of 96.71 % after 100 cycles at 0.5C) and a smaller voltage decay (less than 1.5 mV per cycle) compared with the unmodified LRMO. This work provides a new valuable strategy to suppress capacity fading and voltage decay of LRMO through dual-element substitution induced surface defect engineering.</description><subject>Capacity fading</subject><subject>cathodes</subject><subject>commercialization</subject><subject>electric potential difference</subject><subject>energy density</subject><subject>Integrated defect</subject><subject>Li-rich manganese-based oxide</subject><subject>oxygen</subject><subject>Voltage decay</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkb2O1DAUhS0EYoeFF6BALmkyXDtxbEs0aPnZlQbRQG059vWsR5kk2M5K8wS8Nh7NQgnVucV3TnE_Ql4z2DJg_bvD9uBi3nLg3RbUFqR6QjYMtGgkg_Yp2QBw1mip5RV5kfMBgDEh9HNy1WomWt6xDfn1cbVjgyMecSo0r0MusawlzhONk18d-poF98mWenoM6CpW0urKmpCWuXaWJWHO9GEei91jhZw9UTt56uxiXSwnGqyP057Oge5ik6K7p1-nZrAZz0y5nz2-JM-CHTO-esxr8uPzp-83t83u25e7mw-7xnEJpRGai0F4pUOPsuOAQx8C8F4I74UUg1S6Fb1rvQs2dD4w31kNQQjlQHKm2mvy9rK7pPnnirmYY8wOx9FOOK_ZtPUxinHVyv-joDvoBKi2ovyCujTnnDCYJcWjTSfDwJxdmYM5uzJnVwaUqa5q6c3j_joc0f-t_JFTgfcXAOtDHiImk13EqTqJqWowfo7_2v8N_6GnPQ</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Zhang, Zhigui</creator><creator>Kou, Pengzu</creator><creator>Chen, Yu</creator><creator>Zheng, Runguo</creator><creator>Wang, Zhiyuan</creator><creator>Sun, Hongyu</creator><creator>Liu, Yanguo</creator><creator>Wang, Dan</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20250101</creationdate><title>Dual-element substitution induced integrated defect structure to suppress voltage decay and capacity fading of Li-rich Mn-based cathode</title><author>Zhang, Zhigui ; Kou, Pengzu ; Chen, Yu ; Zheng, Runguo ; Wang, Zhiyuan ; Sun, Hongyu ; Liu, Yanguo ; Wang, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-5925b5d89f6e7420eb6ff02655dd575b789356c3dcfaf4df1d4a90f558c072183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Capacity fading</topic><topic>cathodes</topic><topic>commercialization</topic><topic>electric potential difference</topic><topic>energy density</topic><topic>Integrated defect</topic><topic>Li-rich manganese-based oxide</topic><topic>oxygen</topic><topic>Voltage decay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhigui</creatorcontrib><creatorcontrib>Kou, Pengzu</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Zheng, Runguo</creatorcontrib><creatorcontrib>Wang, Zhiyuan</creatorcontrib><creatorcontrib>Sun, Hongyu</creatorcontrib><creatorcontrib>Liu, Yanguo</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhigui</au><au>Kou, Pengzu</au><au>Chen, Yu</au><au>Zheng, Runguo</au><au>Wang, Zhiyuan</au><au>Sun, Hongyu</au><au>Liu, Yanguo</au><au>Wang, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-element substitution induced integrated defect structure to suppress voltage decay and capacity fading of Li-rich Mn-based cathode</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2025-01-01</date><risdate>2025</risdate><volume>677</volume><issue>Pt B</issue><spage>377</spage><epage>386</epage><pages>377-386</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>Figure. Dual-element substitution induced integrated defect structure to suppress voltage decay and capacity fading of Li-rich Mn-based cathode. [Display omitted] •The integrated defects are constructed in Li-rich cathodes by Na2SnO3 modification.•The modification improves the cycling stability and suppresses the voltage decay.•The mechanism of enhanced performance by Na2SnO3 modification is revealed. Li-rich manganese-based oxide (LRMO) is considered one of the most promising cathode materials for next-generation lithium-ion batteries due to its high energy density. However, many issues need to be addressed before its large-scale commercialization, including significant voltage decay and capacity fading. Herein, a Sn4+/Na+ co-doping induced integrated defect structure (oxygen vacancies, stacking faults, and surface spinel phase) strategy is proposed to suppress the voltage decay and enhance the cycling performance of LRMO. The integrated surface defect structures have significantly favorable effects on the LRMO, where the oxygen vacancies remove surface labile oxygen and suppress surface oxygen release, the induced stacking faults alleviate the stress accumulation during cycling, the surface spinel phase promotes the Li+ diffusion and prevents the outward migration of cations, and the co-doped Sn4+/Na+ stabilize the layered structure. As a result, the modified sample Na2SnO3-1 % (NSO-1) achieves excellent cycling performance (capacity of 207 mAh/g and capacity retention of 96.71 % after 100 cycles at 0.5C) and a smaller voltage decay (less than 1.5 mV per cycle) compared with the unmodified LRMO. This work provides a new valuable strategy to suppress capacity fading and voltage decay of LRMO through dual-element substitution induced surface defect engineering.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39153241</pmid><doi>10.1016/j.jcis.2024.08.078</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2025-01, Vol.677 (Pt B), p.377-386
issn 0021-9797
1095-7103
1095-7103
language eng
recordid cdi_proquest_miscellaneous_3094045083
source Elsevier ScienceDirect Journals
subjects Capacity fading
cathodes
commercialization
electric potential difference
energy density
Integrated defect
Li-rich manganese-based oxide
oxygen
Voltage decay
title Dual-element substitution induced integrated defect structure to suppress voltage decay and capacity fading of Li-rich Mn-based cathode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A52%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-element%20substitution%20induced%20integrated%20defect%20structure%20to%20suppress%20voltage%20decay%20and%20capacity%20fading%20of%20Li-rich%20Mn-based%20cathode&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Zhang,%20Zhigui&rft.date=2025-01-01&rft.volume=677&rft.issue=Pt%20B&rft.spage=377&rft.epage=386&rft.pages=377-386&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.08.078&rft_dat=%3Cproquest_cross%3E3153812837%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3094045083&rft_id=info:pmid/39153241&rft_els_id=S0021979724018605&rfr_iscdi=true