Recent speciation and adaptation to aridity in the ecologically diverse Pilbara region of Australia enabled the native tobaccos (Nicotiana; Solanaceae) to colonize all Australian deserts
Over the last 6 million years, the arid Australian Eremaean Zone (EZ) has remained as dry as it is today. A widely accepted hypothesis suggests that the flora and fauna of arid regions were more broadly distributed before aridification began. In Australia, this process started around 20 million year...
Gespeichert in:
Veröffentlicht in: | Molecular ecology 2024-09, Vol.33 (18), p.e17498-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 18 |
container_start_page | e17498 |
container_title | Molecular ecology |
container_volume | 33 |
creator | Cauz‐Santos, Luiz A. Samuel, Rosabelle Metschina, Dominik Christenhusz, Maarten J. M. Dodsworth, Steven Dixon, Kingsley W. Conran, John G. Paun, Ovidiu Chase, Mark W. |
description | Over the last 6 million years, the arid Australian Eremaean Zone (EZ) has remained as dry as it is today. A widely accepted hypothesis suggests that the flora and fauna of arid regions were more broadly distributed before aridification began. In Australia, this process started around 20 million years ago (Ma), leading to gradual speciation as the climate became increasingly arid. Here, we use genomic data to investigate the biogeography and timing of divergence of native allotetraploid tobaccos, Nicotiana section Suaveolentes (Solanaceae). The original allotetraploid migrants from South America were adapted to mesic areas of Australia and recently radiated in the EZ, including in sandy dune fields (only 1.2 Ma old), after developing drought adaptations. Coalescent and maximum likelihood analyses suggest that Nicotiana section Suaveolentes arrived on the continent around 6 Ma, with the ancestors of the Pilbara (Western Australian) lineages radiating there at the onset of extreme aridity 5 Ma by locally adapting to these various ancient, highly stable habitats. The Pilbara thus served as both a mesic refugium and cradle for adaptations to harsher conditions, due to its high topographical diversity, providing microhabitats with varying moisture levels and its proximity to the ocean, which buffers against extreme aridity. This enabled species like Nicotiana to survive in mesic refugia and subsequently adapt to more arid conditions. These results demonstrate that initially poorly adapted plant groups can develop novel adaptations in situ, permitting extensive and rapid dispersal despite the highly variable and unpredictable extreme conditions of the EZ. |
doi_str_mv | 10.1111/mec.17498 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3094044974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119625706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2438-5b82c2ba086c15fb9df4eb5d55bdfe34ed1507cb1c161b4dc0a7de7f4da38b123</originalsourceid><addsrcrecordid>eNp1kVtrFTEQx4Mo9lh98AtIwJf2Ydtkk-wFn8qhXqBe8AK-hUkyW1NyNqfJbuX40fx05nSrguC8DAO_-c3An5CnnJ3wUqcbtCe8lX13j6y4aFRV9_LrfbJifVNXnHXigDzK-YoxLmqlHpID0XNVN023Ij8_osVxonmL1sPk40hhdBQcbKdlnCKF5J2fdtSX6RtStDHES28hhB11_gZTRvrBBwMJaMLL_VYc6NmcpwTBA8URTEB3uzwW6w0WqwFrY6ZH77yNk4cRXtBPMZRuEfB4f3Z_ZvQ_kJZDf20jdZgxTfkxeTBAyPjkrh-SLy_PP69fVxfvX71Zn11Utpaiq5TpalsbYF1juRpM7waJRjmljBtQSHRcsdYabnnDjXSWQeuwHaQD0Rlei0NytHi3KV7PmCe98dliKL9inLMWrJdMyr6VBX3-D3oV5zSW77TgvKShWtYU6nihbIo5Jxz0NvkNpJ3mTO8D1SVQfRtoYZ_dGWezQfeH_J1gAU4X4LsPuPu_Sb89Xy_KXwBirlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119625706</pqid></control><display><type>article</type><title>Recent speciation and adaptation to aridity in the ecologically diverse Pilbara region of Australia enabled the native tobaccos (Nicotiana; Solanaceae) to colonize all Australian deserts</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Cauz‐Santos, Luiz A. ; Samuel, Rosabelle ; Metschina, Dominik ; Christenhusz, Maarten J. M. ; Dodsworth, Steven ; Dixon, Kingsley W. ; Conran, John G. ; Paun, Ovidiu ; Chase, Mark W.</creator><creatorcontrib>Cauz‐Santos, Luiz A. ; Samuel, Rosabelle ; Metschina, Dominik ; Christenhusz, Maarten J. M. ; Dodsworth, Steven ; Dixon, Kingsley W. ; Conran, John G. ; Paun, Ovidiu ; Chase, Mark W.</creatorcontrib><description>Over the last 6 million years, the arid Australian Eremaean Zone (EZ) has remained as dry as it is today. A widely accepted hypothesis suggests that the flora and fauna of arid regions were more broadly distributed before aridification began. In Australia, this process started around 20 million years ago (Ma), leading to gradual speciation as the climate became increasingly arid. Here, we use genomic data to investigate the biogeography and timing of divergence of native allotetraploid tobaccos, Nicotiana section Suaveolentes (Solanaceae). The original allotetraploid migrants from South America were adapted to mesic areas of Australia and recently radiated in the EZ, including in sandy dune fields (only 1.2 Ma old), after developing drought adaptations. Coalescent and maximum likelihood analyses suggest that Nicotiana section Suaveolentes arrived on the continent around 6 Ma, with the ancestors of the Pilbara (Western Australian) lineages radiating there at the onset of extreme aridity 5 Ma by locally adapting to these various ancient, highly stable habitats. The Pilbara thus served as both a mesic refugium and cradle for adaptations to harsher conditions, due to its high topographical diversity, providing microhabitats with varying moisture levels and its proximity to the ocean, which buffers against extreme aridity. This enabled species like Nicotiana to survive in mesic refugia and subsequently adapt to more arid conditions. These results demonstrate that initially poorly adapted plant groups can develop novel adaptations in situ, permitting extensive and rapid dispersal despite the highly variable and unpredictable extreme conditions of the EZ.</description><identifier>ISSN: 0962-1083</identifier><identifier>ISSN: 1365-294X</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.17498</identifier><identifier>PMID: 39152668</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Adaptation ; Adaptation, Physiological - genetics ; Arid regions ; Arid zones ; Aridity ; Australia ; Biogeography ; Desert Climate ; dispersal ; diversification ; Drought ; drought adaptation ; Droughts ; Extreme values ; Flora ; Genetic Speciation ; Genetics, Population ; Microhabitats ; Nicotiana ; Nicotiana - genetics ; Nicotiana section Suaveolentes ; phylogenomics ; Phylogeny ; Phylogeography ; Refugia ; Solanaceae ; Speciation</subject><ispartof>Molecular ecology, 2024-09, Vol.33 (18), p.e17498-n/a</ispartof><rights>2024 The Author(s). published by John Wiley & Sons Ltd.</rights><rights>2024 The Author(s). Molecular Ecology published by John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2438-5b82c2ba086c15fb9df4eb5d55bdfe34ed1507cb1c161b4dc0a7de7f4da38b123</cites><orcidid>0000-0002-9927-4938 ; 0000-0002-8295-4937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.17498$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.17498$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39152668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cauz‐Santos, Luiz A.</creatorcontrib><creatorcontrib>Samuel, Rosabelle</creatorcontrib><creatorcontrib>Metschina, Dominik</creatorcontrib><creatorcontrib>Christenhusz, Maarten J. M.</creatorcontrib><creatorcontrib>Dodsworth, Steven</creatorcontrib><creatorcontrib>Dixon, Kingsley W.</creatorcontrib><creatorcontrib>Conran, John G.</creatorcontrib><creatorcontrib>Paun, Ovidiu</creatorcontrib><creatorcontrib>Chase, Mark W.</creatorcontrib><title>Recent speciation and adaptation to aridity in the ecologically diverse Pilbara region of Australia enabled the native tobaccos (Nicotiana; Solanaceae) to colonize all Australian deserts</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Over the last 6 million years, the arid Australian Eremaean Zone (EZ) has remained as dry as it is today. A widely accepted hypothesis suggests that the flora and fauna of arid regions were more broadly distributed before aridification began. In Australia, this process started around 20 million years ago (Ma), leading to gradual speciation as the climate became increasingly arid. Here, we use genomic data to investigate the biogeography and timing of divergence of native allotetraploid tobaccos, Nicotiana section Suaveolentes (Solanaceae). The original allotetraploid migrants from South America were adapted to mesic areas of Australia and recently radiated in the EZ, including in sandy dune fields (only 1.2 Ma old), after developing drought adaptations. Coalescent and maximum likelihood analyses suggest that Nicotiana section Suaveolentes arrived on the continent around 6 Ma, with the ancestors of the Pilbara (Western Australian) lineages radiating there at the onset of extreme aridity 5 Ma by locally adapting to these various ancient, highly stable habitats. The Pilbara thus served as both a mesic refugium and cradle for adaptations to harsher conditions, due to its high topographical diversity, providing microhabitats with varying moisture levels and its proximity to the ocean, which buffers against extreme aridity. This enabled species like Nicotiana to survive in mesic refugia and subsequently adapt to more arid conditions. These results demonstrate that initially poorly adapted plant groups can develop novel adaptations in situ, permitting extensive and rapid dispersal despite the highly variable and unpredictable extreme conditions of the EZ.</description><subject>Adaptation</subject><subject>Adaptation, Physiological - genetics</subject><subject>Arid regions</subject><subject>Arid zones</subject><subject>Aridity</subject><subject>Australia</subject><subject>Biogeography</subject><subject>Desert Climate</subject><subject>dispersal</subject><subject>diversification</subject><subject>Drought</subject><subject>drought adaptation</subject><subject>Droughts</subject><subject>Extreme values</subject><subject>Flora</subject><subject>Genetic Speciation</subject><subject>Genetics, Population</subject><subject>Microhabitats</subject><subject>Nicotiana</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana section Suaveolentes</subject><subject>phylogenomics</subject><subject>Phylogeny</subject><subject>Phylogeography</subject><subject>Refugia</subject><subject>Solanaceae</subject><subject>Speciation</subject><issn>0962-1083</issn><issn>1365-294X</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kVtrFTEQx4Mo9lh98AtIwJf2Ydtkk-wFn8qhXqBe8AK-hUkyW1NyNqfJbuX40fx05nSrguC8DAO_-c3An5CnnJ3wUqcbtCe8lX13j6y4aFRV9_LrfbJifVNXnHXigDzK-YoxLmqlHpID0XNVN023Ij8_osVxonmL1sPk40hhdBQcbKdlnCKF5J2fdtSX6RtStDHES28hhB11_gZTRvrBBwMJaMLL_VYc6NmcpwTBA8URTEB3uzwW6w0WqwFrY6ZH77yNk4cRXtBPMZRuEfB4f3Z_ZvQ_kJZDf20jdZgxTfkxeTBAyPjkrh-SLy_PP69fVxfvX71Zn11Utpaiq5TpalsbYF1juRpM7waJRjmljBtQSHRcsdYabnnDjXSWQeuwHaQD0Rlei0NytHi3KV7PmCe98dliKL9inLMWrJdMyr6VBX3-D3oV5zSW77TgvKShWtYU6nihbIo5Jxz0NvkNpJ3mTO8D1SVQfRtoYZ_dGWezQfeH_J1gAU4X4LsPuPu_Sb89Xy_KXwBirlw</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Cauz‐Santos, Luiz A.</creator><creator>Samuel, Rosabelle</creator><creator>Metschina, Dominik</creator><creator>Christenhusz, Maarten J. M.</creator><creator>Dodsworth, Steven</creator><creator>Dixon, Kingsley W.</creator><creator>Conran, John G.</creator><creator>Paun, Ovidiu</creator><creator>Chase, Mark W.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9927-4938</orcidid><orcidid>https://orcid.org/0000-0002-8295-4937</orcidid></search><sort><creationdate>202409</creationdate><title>Recent speciation and adaptation to aridity in the ecologically diverse Pilbara region of Australia enabled the native tobaccos (Nicotiana; Solanaceae) to colonize all Australian deserts</title><author>Cauz‐Santos, Luiz A. ; Samuel, Rosabelle ; Metschina, Dominik ; Christenhusz, Maarten J. M. ; Dodsworth, Steven ; Dixon, Kingsley W. ; Conran, John G. ; Paun, Ovidiu ; Chase, Mark W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2438-5b82c2ba086c15fb9df4eb5d55bdfe34ed1507cb1c161b4dc0a7de7f4da38b123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Adaptation, Physiological - genetics</topic><topic>Arid regions</topic><topic>Arid zones</topic><topic>Aridity</topic><topic>Australia</topic><topic>Biogeography</topic><topic>Desert Climate</topic><topic>dispersal</topic><topic>diversification</topic><topic>Drought</topic><topic>drought adaptation</topic><topic>Droughts</topic><topic>Extreme values</topic><topic>Flora</topic><topic>Genetic Speciation</topic><topic>Genetics, Population</topic><topic>Microhabitats</topic><topic>Nicotiana</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana section Suaveolentes</topic><topic>phylogenomics</topic><topic>Phylogeny</topic><topic>Phylogeography</topic><topic>Refugia</topic><topic>Solanaceae</topic><topic>Speciation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cauz‐Santos, Luiz A.</creatorcontrib><creatorcontrib>Samuel, Rosabelle</creatorcontrib><creatorcontrib>Metschina, Dominik</creatorcontrib><creatorcontrib>Christenhusz, Maarten J. M.</creatorcontrib><creatorcontrib>Dodsworth, Steven</creatorcontrib><creatorcontrib>Dixon, Kingsley W.</creatorcontrib><creatorcontrib>Conran, John G.</creatorcontrib><creatorcontrib>Paun, Ovidiu</creatorcontrib><creatorcontrib>Chase, Mark W.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cauz‐Santos, Luiz A.</au><au>Samuel, Rosabelle</au><au>Metschina, Dominik</au><au>Christenhusz, Maarten J. M.</au><au>Dodsworth, Steven</au><au>Dixon, Kingsley W.</au><au>Conran, John G.</au><au>Paun, Ovidiu</au><au>Chase, Mark W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent speciation and adaptation to aridity in the ecologically diverse Pilbara region of Australia enabled the native tobaccos (Nicotiana; Solanaceae) to colonize all Australian deserts</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2024-09</date><risdate>2024</risdate><volume>33</volume><issue>18</issue><spage>e17498</spage><epage>n/a</epage><pages>e17498-n/a</pages><issn>0962-1083</issn><issn>1365-294X</issn><eissn>1365-294X</eissn><abstract>Over the last 6 million years, the arid Australian Eremaean Zone (EZ) has remained as dry as it is today. A widely accepted hypothesis suggests that the flora and fauna of arid regions were more broadly distributed before aridification began. In Australia, this process started around 20 million years ago (Ma), leading to gradual speciation as the climate became increasingly arid. Here, we use genomic data to investigate the biogeography and timing of divergence of native allotetraploid tobaccos, Nicotiana section Suaveolentes (Solanaceae). The original allotetraploid migrants from South America were adapted to mesic areas of Australia and recently radiated in the EZ, including in sandy dune fields (only 1.2 Ma old), after developing drought adaptations. Coalescent and maximum likelihood analyses suggest that Nicotiana section Suaveolentes arrived on the continent around 6 Ma, with the ancestors of the Pilbara (Western Australian) lineages radiating there at the onset of extreme aridity 5 Ma by locally adapting to these various ancient, highly stable habitats. The Pilbara thus served as both a mesic refugium and cradle for adaptations to harsher conditions, due to its high topographical diversity, providing microhabitats with varying moisture levels and its proximity to the ocean, which buffers against extreme aridity. This enabled species like Nicotiana to survive in mesic refugia and subsequently adapt to more arid conditions. These results demonstrate that initially poorly adapted plant groups can develop novel adaptations in situ, permitting extensive and rapid dispersal despite the highly variable and unpredictable extreme conditions of the EZ.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>39152668</pmid><doi>10.1111/mec.17498</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9927-4938</orcidid><orcidid>https://orcid.org/0000-0002-8295-4937</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1083 |
ispartof | Molecular ecology, 2024-09, Vol.33 (18), p.e17498-n/a |
issn | 0962-1083 1365-294X 1365-294X |
language | eng |
recordid | cdi_proquest_miscellaneous_3094044974 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Adaptation Adaptation, Physiological - genetics Arid regions Arid zones Aridity Australia Biogeography Desert Climate dispersal diversification Drought drought adaptation Droughts Extreme values Flora Genetic Speciation Genetics, Population Microhabitats Nicotiana Nicotiana - genetics Nicotiana section Suaveolentes phylogenomics Phylogeny Phylogeography Refugia Solanaceae Speciation |
title | Recent speciation and adaptation to aridity in the ecologically diverse Pilbara region of Australia enabled the native tobaccos (Nicotiana; Solanaceae) to colonize all Australian deserts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A30%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20speciation%20and%20adaptation%20to%20aridity%20in%20the%20ecologically%20diverse%20Pilbara%20region%20of%20Australia%20enabled%20the%20native%20tobaccos%20(Nicotiana;%20Solanaceae)%20to%20colonize%20all%20Australian%20deserts&rft.jtitle=Molecular%20ecology&rft.au=Cauz%E2%80%90Santos,%20Luiz%20A.&rft.date=2024-09&rft.volume=33&rft.issue=18&rft.spage=e17498&rft.epage=n/a&rft.pages=e17498-n/a&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.17498&rft_dat=%3Cproquest_cross%3E3119625706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119625706&rft_id=info:pmid/39152668&rfr_iscdi=true |