Recent speciation and adaptation to aridity in the ecologically diverse Pilbara region of Australia enabled the native tobaccos (Nicotiana; Solanaceae) to colonize all Australian deserts

Over the last 6 million years, the arid Australian Eremaean Zone (EZ) has remained as dry as it is today. A widely accepted hypothesis suggests that the flora and fauna of arid regions were more broadly distributed before aridification began. In Australia, this process started around 20 million year...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology 2024-09, Vol.33 (18), p.e17498-n/a
Hauptverfasser: Cauz‐Santos, Luiz A., Samuel, Rosabelle, Metschina, Dominik, Christenhusz, Maarten J. M., Dodsworth, Steven, Dixon, Kingsley W., Conran, John G., Paun, Ovidiu, Chase, Mark W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page e17498
container_title Molecular ecology
container_volume 33
creator Cauz‐Santos, Luiz A.
Samuel, Rosabelle
Metschina, Dominik
Christenhusz, Maarten J. M.
Dodsworth, Steven
Dixon, Kingsley W.
Conran, John G.
Paun, Ovidiu
Chase, Mark W.
description Over the last 6 million years, the arid Australian Eremaean Zone (EZ) has remained as dry as it is today. A widely accepted hypothesis suggests that the flora and fauna of arid regions were more broadly distributed before aridification began. In Australia, this process started around 20 million years ago (Ma), leading to gradual speciation as the climate became increasingly arid. Here, we use genomic data to investigate the biogeography and timing of divergence of native allotetraploid tobaccos, Nicotiana section Suaveolentes (Solanaceae). The original allotetraploid migrants from South America were adapted to mesic areas of Australia and recently radiated in the EZ, including in sandy dune fields (only 1.2 Ma old), after developing drought adaptations. Coalescent and maximum likelihood analyses suggest that Nicotiana section Suaveolentes arrived on the continent around 6 Ma, with the ancestors of the Pilbara (Western Australian) lineages radiating there at the onset of extreme aridity 5 Ma by locally adapting to these various ancient, highly stable habitats. The Pilbara thus served as both a mesic refugium and cradle for adaptations to harsher conditions, due to its high topographical diversity, providing microhabitats with varying moisture levels and its proximity to the ocean, which buffers against extreme aridity. This enabled species like Nicotiana to survive in mesic refugia and subsequently adapt to more arid conditions. These results demonstrate that initially poorly adapted plant groups can develop novel adaptations in situ, permitting extensive and rapid dispersal despite the highly variable and unpredictable extreme conditions of the EZ.
doi_str_mv 10.1111/mec.17498
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3094044974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119625706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2438-5b82c2ba086c15fb9df4eb5d55bdfe34ed1507cb1c161b4dc0a7de7f4da38b123</originalsourceid><addsrcrecordid>eNp1kVtrFTEQx4Mo9lh98AtIwJf2Ydtkk-wFn8qhXqBe8AK-hUkyW1NyNqfJbuX40fx05nSrguC8DAO_-c3An5CnnJ3wUqcbtCe8lX13j6y4aFRV9_LrfbJifVNXnHXigDzK-YoxLmqlHpID0XNVN023Ij8_osVxonmL1sPk40hhdBQcbKdlnCKF5J2fdtSX6RtStDHES28hhB11_gZTRvrBBwMJaMLL_VYc6NmcpwTBA8URTEB3uzwW6w0WqwFrY6ZH77yNk4cRXtBPMZRuEfB4f3Z_ZvQ_kJZDf20jdZgxTfkxeTBAyPjkrh-SLy_PP69fVxfvX71Zn11Utpaiq5TpalsbYF1juRpM7waJRjmljBtQSHRcsdYabnnDjXSWQeuwHaQD0Rlei0NytHi3KV7PmCe98dliKL9inLMWrJdMyr6VBX3-D3oV5zSW77TgvKShWtYU6nihbIo5Jxz0NvkNpJ3mTO8D1SVQfRtoYZ_dGWezQfeH_J1gAU4X4LsPuPu_Sb89Xy_KXwBirlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119625706</pqid></control><display><type>article</type><title>Recent speciation and adaptation to aridity in the ecologically diverse Pilbara region of Australia enabled the native tobaccos (Nicotiana; Solanaceae) to colonize all Australian deserts</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Cauz‐Santos, Luiz A. ; Samuel, Rosabelle ; Metschina, Dominik ; Christenhusz, Maarten J. M. ; Dodsworth, Steven ; Dixon, Kingsley W. ; Conran, John G. ; Paun, Ovidiu ; Chase, Mark W.</creator><creatorcontrib>Cauz‐Santos, Luiz A. ; Samuel, Rosabelle ; Metschina, Dominik ; Christenhusz, Maarten J. M. ; Dodsworth, Steven ; Dixon, Kingsley W. ; Conran, John G. ; Paun, Ovidiu ; Chase, Mark W.</creatorcontrib><description>Over the last 6 million years, the arid Australian Eremaean Zone (EZ) has remained as dry as it is today. A widely accepted hypothesis suggests that the flora and fauna of arid regions were more broadly distributed before aridification began. In Australia, this process started around 20 million years ago (Ma), leading to gradual speciation as the climate became increasingly arid. Here, we use genomic data to investigate the biogeography and timing of divergence of native allotetraploid tobaccos, Nicotiana section Suaveolentes (Solanaceae). The original allotetraploid migrants from South America were adapted to mesic areas of Australia and recently radiated in the EZ, including in sandy dune fields (only 1.2 Ma old), after developing drought adaptations. Coalescent and maximum likelihood analyses suggest that Nicotiana section Suaveolentes arrived on the continent around 6 Ma, with the ancestors of the Pilbara (Western Australian) lineages radiating there at the onset of extreme aridity 5 Ma by locally adapting to these various ancient, highly stable habitats. The Pilbara thus served as both a mesic refugium and cradle for adaptations to harsher conditions, due to its high topographical diversity, providing microhabitats with varying moisture levels and its proximity to the ocean, which buffers against extreme aridity. This enabled species like Nicotiana to survive in mesic refugia and subsequently adapt to more arid conditions. These results demonstrate that initially poorly adapted plant groups can develop novel adaptations in situ, permitting extensive and rapid dispersal despite the highly variable and unpredictable extreme conditions of the EZ.</description><identifier>ISSN: 0962-1083</identifier><identifier>ISSN: 1365-294X</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.17498</identifier><identifier>PMID: 39152668</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Adaptation ; Adaptation, Physiological - genetics ; Arid regions ; Arid zones ; Aridity ; Australia ; Biogeography ; Desert Climate ; dispersal ; diversification ; Drought ; drought adaptation ; Droughts ; Extreme values ; Flora ; Genetic Speciation ; Genetics, Population ; Microhabitats ; Nicotiana ; Nicotiana - genetics ; Nicotiana section Suaveolentes ; phylogenomics ; Phylogeny ; Phylogeography ; Refugia ; Solanaceae ; Speciation</subject><ispartof>Molecular ecology, 2024-09, Vol.33 (18), p.e17498-n/a</ispartof><rights>2024 The Author(s). published by John Wiley &amp; Sons Ltd.</rights><rights>2024 The Author(s). Molecular Ecology published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2438-5b82c2ba086c15fb9df4eb5d55bdfe34ed1507cb1c161b4dc0a7de7f4da38b123</cites><orcidid>0000-0002-9927-4938 ; 0000-0002-8295-4937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.17498$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.17498$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39152668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cauz‐Santos, Luiz A.</creatorcontrib><creatorcontrib>Samuel, Rosabelle</creatorcontrib><creatorcontrib>Metschina, Dominik</creatorcontrib><creatorcontrib>Christenhusz, Maarten J. M.</creatorcontrib><creatorcontrib>Dodsworth, Steven</creatorcontrib><creatorcontrib>Dixon, Kingsley W.</creatorcontrib><creatorcontrib>Conran, John G.</creatorcontrib><creatorcontrib>Paun, Ovidiu</creatorcontrib><creatorcontrib>Chase, Mark W.</creatorcontrib><title>Recent speciation and adaptation to aridity in the ecologically diverse Pilbara region of Australia enabled the native tobaccos (Nicotiana; Solanaceae) to colonize all Australian deserts</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Over the last 6 million years, the arid Australian Eremaean Zone (EZ) has remained as dry as it is today. A widely accepted hypothesis suggests that the flora and fauna of arid regions were more broadly distributed before aridification began. In Australia, this process started around 20 million years ago (Ma), leading to gradual speciation as the climate became increasingly arid. Here, we use genomic data to investigate the biogeography and timing of divergence of native allotetraploid tobaccos, Nicotiana section Suaveolentes (Solanaceae). The original allotetraploid migrants from South America were adapted to mesic areas of Australia and recently radiated in the EZ, including in sandy dune fields (only 1.2 Ma old), after developing drought adaptations. Coalescent and maximum likelihood analyses suggest that Nicotiana section Suaveolentes arrived on the continent around 6 Ma, with the ancestors of the Pilbara (Western Australian) lineages radiating there at the onset of extreme aridity 5 Ma by locally adapting to these various ancient, highly stable habitats. The Pilbara thus served as both a mesic refugium and cradle for adaptations to harsher conditions, due to its high topographical diversity, providing microhabitats with varying moisture levels and its proximity to the ocean, which buffers against extreme aridity. This enabled species like Nicotiana to survive in mesic refugia and subsequently adapt to more arid conditions. These results demonstrate that initially poorly adapted plant groups can develop novel adaptations in situ, permitting extensive and rapid dispersal despite the highly variable and unpredictable extreme conditions of the EZ.</description><subject>Adaptation</subject><subject>Adaptation, Physiological - genetics</subject><subject>Arid regions</subject><subject>Arid zones</subject><subject>Aridity</subject><subject>Australia</subject><subject>Biogeography</subject><subject>Desert Climate</subject><subject>dispersal</subject><subject>diversification</subject><subject>Drought</subject><subject>drought adaptation</subject><subject>Droughts</subject><subject>Extreme values</subject><subject>Flora</subject><subject>Genetic Speciation</subject><subject>Genetics, Population</subject><subject>Microhabitats</subject><subject>Nicotiana</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana section Suaveolentes</subject><subject>phylogenomics</subject><subject>Phylogeny</subject><subject>Phylogeography</subject><subject>Refugia</subject><subject>Solanaceae</subject><subject>Speciation</subject><issn>0962-1083</issn><issn>1365-294X</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kVtrFTEQx4Mo9lh98AtIwJf2Ydtkk-wFn8qhXqBe8AK-hUkyW1NyNqfJbuX40fx05nSrguC8DAO_-c3An5CnnJ3wUqcbtCe8lX13j6y4aFRV9_LrfbJifVNXnHXigDzK-YoxLmqlHpID0XNVN023Ij8_osVxonmL1sPk40hhdBQcbKdlnCKF5J2fdtSX6RtStDHES28hhB11_gZTRvrBBwMJaMLL_VYc6NmcpwTBA8URTEB3uzwW6w0WqwFrY6ZH77yNk4cRXtBPMZRuEfB4f3Z_ZvQ_kJZDf20jdZgxTfkxeTBAyPjkrh-SLy_PP69fVxfvX71Zn11Utpaiq5TpalsbYF1juRpM7waJRjmljBtQSHRcsdYabnnDjXSWQeuwHaQD0Rlei0NytHi3KV7PmCe98dliKL9inLMWrJdMyr6VBX3-D3oV5zSW77TgvKShWtYU6nihbIo5Jxz0NvkNpJ3mTO8D1SVQfRtoYZ_dGWezQfeH_J1gAU4X4LsPuPu_Sb89Xy_KXwBirlw</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Cauz‐Santos, Luiz A.</creator><creator>Samuel, Rosabelle</creator><creator>Metschina, Dominik</creator><creator>Christenhusz, Maarten J. M.</creator><creator>Dodsworth, Steven</creator><creator>Dixon, Kingsley W.</creator><creator>Conran, John G.</creator><creator>Paun, Ovidiu</creator><creator>Chase, Mark W.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9927-4938</orcidid><orcidid>https://orcid.org/0000-0002-8295-4937</orcidid></search><sort><creationdate>202409</creationdate><title>Recent speciation and adaptation to aridity in the ecologically diverse Pilbara region of Australia enabled the native tobaccos (Nicotiana; Solanaceae) to colonize all Australian deserts</title><author>Cauz‐Santos, Luiz A. ; Samuel, Rosabelle ; Metschina, Dominik ; Christenhusz, Maarten J. M. ; Dodsworth, Steven ; Dixon, Kingsley W. ; Conran, John G. ; Paun, Ovidiu ; Chase, Mark W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2438-5b82c2ba086c15fb9df4eb5d55bdfe34ed1507cb1c161b4dc0a7de7f4da38b123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Adaptation, Physiological - genetics</topic><topic>Arid regions</topic><topic>Arid zones</topic><topic>Aridity</topic><topic>Australia</topic><topic>Biogeography</topic><topic>Desert Climate</topic><topic>dispersal</topic><topic>diversification</topic><topic>Drought</topic><topic>drought adaptation</topic><topic>Droughts</topic><topic>Extreme values</topic><topic>Flora</topic><topic>Genetic Speciation</topic><topic>Genetics, Population</topic><topic>Microhabitats</topic><topic>Nicotiana</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana section Suaveolentes</topic><topic>phylogenomics</topic><topic>Phylogeny</topic><topic>Phylogeography</topic><topic>Refugia</topic><topic>Solanaceae</topic><topic>Speciation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cauz‐Santos, Luiz A.</creatorcontrib><creatorcontrib>Samuel, Rosabelle</creatorcontrib><creatorcontrib>Metschina, Dominik</creatorcontrib><creatorcontrib>Christenhusz, Maarten J. M.</creatorcontrib><creatorcontrib>Dodsworth, Steven</creatorcontrib><creatorcontrib>Dixon, Kingsley W.</creatorcontrib><creatorcontrib>Conran, John G.</creatorcontrib><creatorcontrib>Paun, Ovidiu</creatorcontrib><creatorcontrib>Chase, Mark W.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cauz‐Santos, Luiz A.</au><au>Samuel, Rosabelle</au><au>Metschina, Dominik</au><au>Christenhusz, Maarten J. M.</au><au>Dodsworth, Steven</au><au>Dixon, Kingsley W.</au><au>Conran, John G.</au><au>Paun, Ovidiu</au><au>Chase, Mark W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent speciation and adaptation to aridity in the ecologically diverse Pilbara region of Australia enabled the native tobaccos (Nicotiana; Solanaceae) to colonize all Australian deserts</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2024-09</date><risdate>2024</risdate><volume>33</volume><issue>18</issue><spage>e17498</spage><epage>n/a</epage><pages>e17498-n/a</pages><issn>0962-1083</issn><issn>1365-294X</issn><eissn>1365-294X</eissn><abstract>Over the last 6 million years, the arid Australian Eremaean Zone (EZ) has remained as dry as it is today. A widely accepted hypothesis suggests that the flora and fauna of arid regions were more broadly distributed before aridification began. In Australia, this process started around 20 million years ago (Ma), leading to gradual speciation as the climate became increasingly arid. Here, we use genomic data to investigate the biogeography and timing of divergence of native allotetraploid tobaccos, Nicotiana section Suaveolentes (Solanaceae). The original allotetraploid migrants from South America were adapted to mesic areas of Australia and recently radiated in the EZ, including in sandy dune fields (only 1.2 Ma old), after developing drought adaptations. Coalescent and maximum likelihood analyses suggest that Nicotiana section Suaveolentes arrived on the continent around 6 Ma, with the ancestors of the Pilbara (Western Australian) lineages radiating there at the onset of extreme aridity 5 Ma by locally adapting to these various ancient, highly stable habitats. The Pilbara thus served as both a mesic refugium and cradle for adaptations to harsher conditions, due to its high topographical diversity, providing microhabitats with varying moisture levels and its proximity to the ocean, which buffers against extreme aridity. This enabled species like Nicotiana to survive in mesic refugia and subsequently adapt to more arid conditions. These results demonstrate that initially poorly adapted plant groups can develop novel adaptations in situ, permitting extensive and rapid dispersal despite the highly variable and unpredictable extreme conditions of the EZ.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>39152668</pmid><doi>10.1111/mec.17498</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9927-4938</orcidid><orcidid>https://orcid.org/0000-0002-8295-4937</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2024-09, Vol.33 (18), p.e17498-n/a
issn 0962-1083
1365-294X
1365-294X
language eng
recordid cdi_proquest_miscellaneous_3094044974
source MEDLINE; Access via Wiley Online Library
subjects Adaptation
Adaptation, Physiological - genetics
Arid regions
Arid zones
Aridity
Australia
Biogeography
Desert Climate
dispersal
diversification
Drought
drought adaptation
Droughts
Extreme values
Flora
Genetic Speciation
Genetics, Population
Microhabitats
Nicotiana
Nicotiana - genetics
Nicotiana section Suaveolentes
phylogenomics
Phylogeny
Phylogeography
Refugia
Solanaceae
Speciation
title Recent speciation and adaptation to aridity in the ecologically diverse Pilbara region of Australia enabled the native tobaccos (Nicotiana; Solanaceae) to colonize all Australian deserts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A30%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20speciation%20and%20adaptation%20to%20aridity%20in%20the%20ecologically%20diverse%20Pilbara%20region%20of%20Australia%20enabled%20the%20native%20tobaccos%20(Nicotiana;%20Solanaceae)%20to%20colonize%20all%20Australian%20deserts&rft.jtitle=Molecular%20ecology&rft.au=Cauz%E2%80%90Santos,%20Luiz%20A.&rft.date=2024-09&rft.volume=33&rft.issue=18&rft.spage=e17498&rft.epage=n/a&rft.pages=e17498-n/a&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.17498&rft_dat=%3Cproquest_cross%3E3119625706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119625706&rft_id=info:pmid/39152668&rfr_iscdi=true