An Optimized Decellularized Extracellular Matrix from Dental Pulp Stem Cell Sheets Promotes Axonal Regeneration by Multiple Modes in Spinal Cord Injury Rats
In the field of tissue engineering, the extracellular matrix (ECM) is considered an important element for promoting neural regeneration after spinal cord injury (SCI). Dental pulp stem cells (DPSCs), mesenchymal stem cells that originate from the neural crest, are easy to harvest and culture in vitr...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2025-01, Vol.14 (1), p.e2402312-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e2402312 |
container_title | Advanced healthcare materials |
container_volume | 14 |
creator | Qiu, Wei Zhou, Bangyi Luo, Yifei Chen, Yuanting Chen, Zehao Wu, Keke Wu, Hongle Wu, Buling Guo, Jinshan Fang, Fuchun |
description | In the field of tissue engineering, the extracellular matrix (ECM) is considered an important element for promoting neural regeneration after spinal cord injury (SCI). Dental pulp stem cells (DPSCs), mesenchymal stem cells that originate from the neural crest, are easy to harvest and culture in vitro, express a variety of neurotrophic factors (NTFs) and deposit a large amount of ECM, making them a good choice for stem cell‐ or ECM‐based treatment of SCI. In the present study, decellularized extracellular matrix (dECM) derived from DPSC sheets is used for the treatment of SCI. Optimization experiments reveal that incubating DPSC sheets with 1% Triton X‐100 for 5 min is the best procedure for preparing DPSC dECM. It is found that DPSC dECM promotes nerve repair and regeneration after SCI and restores hindlimb motor function in rats. Mechanistically, DPSC dECM facilitates the migration and neural differentiation of neural stem cells, as well as M2 polarization of microglia, and inhibits the formation of glial scars. This study suggests that the use of DPSC dECM is a potential strategy for the treatment of SCI.
Qiu et al. optimize the preparation of DPSC dECM and transplant it into a rat SCI model. They demonstrate a potential strategy of DPSC dECM promotes migration and neurogenic differentiation of neral stem cells, reduces the formation of glial scars, and regulates the immune microenvironment to execute the axonal regeneration, functional recovery. |
doi_str_mv | 10.1002/adhm.202402312 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3093594237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093594237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3522-32c943876bd96aa88b5e74cac40f6bea62596257303adcf3ef17e96e0c6ec143</originalsourceid><addsrcrecordid>eNqF0U9P2zAYBnBr2jQQ47rjZInLLi3-kzjxsSoMkKhAlHvkOG-GKycOtqO1fBY-LC6FInFZJCu29fMjWw9CPymZUkLYqWoeuikjLCOMU_YFHTIq2YSJXH7dzzNygI5DWJH0iZyKkn5HB1zSrKQlOUTPsx7fDNF05gkafAYarB2t8q_L83X06n0HL1T0Zo1b77oE-6gsvh3tgJcROjxPCi8fAGLAt0m4CAHP1q5P6g7-Qg9eReN6XG_wYrTRDBbwwjVJmR4vB7OFc-cbfNWvRr_BdyqGH-hbq2yA47f_Ebr_c34_v5xc31xczWfXE81zxiacaZnxshB1I4VSZVnnUGRa6Yy0ogYlWC7TKDjhqtEth5YWIAUQLUDTjB-h37vYwbvHEUKsOhO2z1Y9uDFUnEiey4zxItGTT3TlRp_unhTNiShzXpCkpjulvQvBQ1sN3nTKbypKqm1z1ba5at9cOvDrLXasO2j2_L2nBOQO_DMWNv-Jq2Znl4uP8BfHFqYZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150685370</pqid></control><display><type>article</type><title>An Optimized Decellularized Extracellular Matrix from Dental Pulp Stem Cell Sheets Promotes Axonal Regeneration by Multiple Modes in Spinal Cord Injury Rats</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Qiu, Wei ; Zhou, Bangyi ; Luo, Yifei ; Chen, Yuanting ; Chen, Zehao ; Wu, Keke ; Wu, Hongle ; Wu, Buling ; Guo, Jinshan ; Fang, Fuchun</creator><creatorcontrib>Qiu, Wei ; Zhou, Bangyi ; Luo, Yifei ; Chen, Yuanting ; Chen, Zehao ; Wu, Keke ; Wu, Hongle ; Wu, Buling ; Guo, Jinshan ; Fang, Fuchun</creatorcontrib><description>In the field of tissue engineering, the extracellular matrix (ECM) is considered an important element for promoting neural regeneration after spinal cord injury (SCI). Dental pulp stem cells (DPSCs), mesenchymal stem cells that originate from the neural crest, are easy to harvest and culture in vitro, express a variety of neurotrophic factors (NTFs) and deposit a large amount of ECM, making them a good choice for stem cell‐ or ECM‐based treatment of SCI. In the present study, decellularized extracellular matrix (dECM) derived from DPSC sheets is used for the treatment of SCI. Optimization experiments reveal that incubating DPSC sheets with 1% Triton X‐100 for 5 min is the best procedure for preparing DPSC dECM. It is found that DPSC dECM promotes nerve repair and regeneration after SCI and restores hindlimb motor function in rats. Mechanistically, DPSC dECM facilitates the migration and neural differentiation of neural stem cells, as well as M2 polarization of microglia, and inhibits the formation of glial scars. This study suggests that the use of DPSC dECM is a potential strategy for the treatment of SCI.
Qiu et al. optimize the preparation of DPSC dECM and transplant it into a rat SCI model. They demonstrate a potential strategy of DPSC dECM promotes migration and neurogenic differentiation of neral stem cells, reduces the formation of glial scars, and regulates the immune microenvironment to execute the axonal regeneration, functional recovery.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202402312</identifier><identifier>PMID: 39148180</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Axons - metabolism ; Axons - physiology ; Cell culture ; Cell Differentiation ; decellularized extracellular matrix ; Decellularized Extracellular Matrix - chemistry ; Decellularized Extracellular Matrix - pharmacology ; Dental materials ; Dental pulp ; Dental Pulp - cytology ; dental pulp stem cells ; Extracellular matrix ; Leukocyte migration ; Male ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - metabolism ; Microglia ; Nerve Regeneration - physiology ; Neural crest ; neural regeneration ; Neural stem cells ; Neural Stem Cells - cytology ; Neural Stem Cells - metabolism ; Neuronal-glial interactions ; Neurotrophic factors ; Rats ; Rats, Sprague-Dawley ; Regeneration ; Spinal cord injuries ; Spinal Cord Injuries - therapy ; spinal cord injury ; Stem cells ; Stem Cells - cytology ; Stem Cells - metabolism ; Tissue engineering</subject><ispartof>Advanced healthcare materials, 2025-01, Vol.14 (1), p.e2402312-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><rights>2025 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3522-32c943876bd96aa88b5e74cac40f6bea62596257303adcf3ef17e96e0c6ec143</cites><orcidid>0000-0001-9947-7906 ; 0000-0001-8097-4902 ; 0000-0002-0090-8073 ; 0000-0001-9002-146X ; 0000-0002-3032-6963 ; 0000-0003-1294-479X ; 0000-0001-8039-1627 ; 0000-0002-0139-3024 ; 0000-0002-5548-5629 ; 0000-0001-7070-0051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202402312$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202402312$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39148180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Wei</creatorcontrib><creatorcontrib>Zhou, Bangyi</creatorcontrib><creatorcontrib>Luo, Yifei</creatorcontrib><creatorcontrib>Chen, Yuanting</creatorcontrib><creatorcontrib>Chen, Zehao</creatorcontrib><creatorcontrib>Wu, Keke</creatorcontrib><creatorcontrib>Wu, Hongle</creatorcontrib><creatorcontrib>Wu, Buling</creatorcontrib><creatorcontrib>Guo, Jinshan</creatorcontrib><creatorcontrib>Fang, Fuchun</creatorcontrib><title>An Optimized Decellularized Extracellular Matrix from Dental Pulp Stem Cell Sheets Promotes Axonal Regeneration by Multiple Modes in Spinal Cord Injury Rats</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>In the field of tissue engineering, the extracellular matrix (ECM) is considered an important element for promoting neural regeneration after spinal cord injury (SCI). Dental pulp stem cells (DPSCs), mesenchymal stem cells that originate from the neural crest, are easy to harvest and culture in vitro, express a variety of neurotrophic factors (NTFs) and deposit a large amount of ECM, making them a good choice for stem cell‐ or ECM‐based treatment of SCI. In the present study, decellularized extracellular matrix (dECM) derived from DPSC sheets is used for the treatment of SCI. Optimization experiments reveal that incubating DPSC sheets with 1% Triton X‐100 for 5 min is the best procedure for preparing DPSC dECM. It is found that DPSC dECM promotes nerve repair and regeneration after SCI and restores hindlimb motor function in rats. Mechanistically, DPSC dECM facilitates the migration and neural differentiation of neural stem cells, as well as M2 polarization of microglia, and inhibits the formation of glial scars. This study suggests that the use of DPSC dECM is a potential strategy for the treatment of SCI.
Qiu et al. optimize the preparation of DPSC dECM and transplant it into a rat SCI model. They demonstrate a potential strategy of DPSC dECM promotes migration and neurogenic differentiation of neral stem cells, reduces the formation of glial scars, and regulates the immune microenvironment to execute the axonal regeneration, functional recovery.</description><subject>Animals</subject><subject>Axons - metabolism</subject><subject>Axons - physiology</subject><subject>Cell culture</subject><subject>Cell Differentiation</subject><subject>decellularized extracellular matrix</subject><subject>Decellularized Extracellular Matrix - chemistry</subject><subject>Decellularized Extracellular Matrix - pharmacology</subject><subject>Dental materials</subject><subject>Dental pulp</subject><subject>Dental Pulp - cytology</subject><subject>dental pulp stem cells</subject><subject>Extracellular matrix</subject><subject>Leukocyte migration</subject><subject>Male</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Microglia</subject><subject>Nerve Regeneration - physiology</subject><subject>Neural crest</subject><subject>neural regeneration</subject><subject>Neural stem cells</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neuronal-glial interactions</subject><subject>Neurotrophic factors</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Regeneration</subject><subject>Spinal cord injuries</subject><subject>Spinal Cord Injuries - therapy</subject><subject>spinal cord injury</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>Tissue engineering</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U9P2zAYBnBr2jQQ47rjZInLLi3-kzjxsSoMkKhAlHvkOG-GKycOtqO1fBY-LC6FInFZJCu29fMjWw9CPymZUkLYqWoeuikjLCOMU_YFHTIq2YSJXH7dzzNygI5DWJH0iZyKkn5HB1zSrKQlOUTPsx7fDNF05gkafAYarB2t8q_L83X06n0HL1T0Zo1b77oE-6gsvh3tgJcROjxPCi8fAGLAt0m4CAHP1q5P6g7-Qg9eReN6XG_wYrTRDBbwwjVJmR4vB7OFc-cbfNWvRr_BdyqGH-hbq2yA47f_Ebr_c34_v5xc31xczWfXE81zxiacaZnxshB1I4VSZVnnUGRa6Yy0ogYlWC7TKDjhqtEth5YWIAUQLUDTjB-h37vYwbvHEUKsOhO2z1Y9uDFUnEiey4zxItGTT3TlRp_unhTNiShzXpCkpjulvQvBQ1sN3nTKbypKqm1z1ba5at9cOvDrLXasO2j2_L2nBOQO_DMWNv-Jq2Znl4uP8BfHFqYZ</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Qiu, Wei</creator><creator>Zhou, Bangyi</creator><creator>Luo, Yifei</creator><creator>Chen, Yuanting</creator><creator>Chen, Zehao</creator><creator>Wu, Keke</creator><creator>Wu, Hongle</creator><creator>Wu, Buling</creator><creator>Guo, Jinshan</creator><creator>Fang, Fuchun</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9947-7906</orcidid><orcidid>https://orcid.org/0000-0001-8097-4902</orcidid><orcidid>https://orcid.org/0000-0002-0090-8073</orcidid><orcidid>https://orcid.org/0000-0001-9002-146X</orcidid><orcidid>https://orcid.org/0000-0002-3032-6963</orcidid><orcidid>https://orcid.org/0000-0003-1294-479X</orcidid><orcidid>https://orcid.org/0000-0001-8039-1627</orcidid><orcidid>https://orcid.org/0000-0002-0139-3024</orcidid><orcidid>https://orcid.org/0000-0002-5548-5629</orcidid><orcidid>https://orcid.org/0000-0001-7070-0051</orcidid></search><sort><creationdate>202501</creationdate><title>An Optimized Decellularized Extracellular Matrix from Dental Pulp Stem Cell Sheets Promotes Axonal Regeneration by Multiple Modes in Spinal Cord Injury Rats</title><author>Qiu, Wei ; Zhou, Bangyi ; Luo, Yifei ; Chen, Yuanting ; Chen, Zehao ; Wu, Keke ; Wu, Hongle ; Wu, Buling ; Guo, Jinshan ; Fang, Fuchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3522-32c943876bd96aa88b5e74cac40f6bea62596257303adcf3ef17e96e0c6ec143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Animals</topic><topic>Axons - metabolism</topic><topic>Axons - physiology</topic><topic>Cell culture</topic><topic>Cell Differentiation</topic><topic>decellularized extracellular matrix</topic><topic>Decellularized Extracellular Matrix - chemistry</topic><topic>Decellularized Extracellular Matrix - pharmacology</topic><topic>Dental materials</topic><topic>Dental pulp</topic><topic>Dental Pulp - cytology</topic><topic>dental pulp stem cells</topic><topic>Extracellular matrix</topic><topic>Leukocyte migration</topic><topic>Male</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Microglia</topic><topic>Nerve Regeneration - physiology</topic><topic>Neural crest</topic><topic>neural regeneration</topic><topic>Neural stem cells</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neuronal-glial interactions</topic><topic>Neurotrophic factors</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Regeneration</topic><topic>Spinal cord injuries</topic><topic>Spinal Cord Injuries - therapy</topic><topic>spinal cord injury</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Wei</creatorcontrib><creatorcontrib>Zhou, Bangyi</creatorcontrib><creatorcontrib>Luo, Yifei</creatorcontrib><creatorcontrib>Chen, Yuanting</creatorcontrib><creatorcontrib>Chen, Zehao</creatorcontrib><creatorcontrib>Wu, Keke</creatorcontrib><creatorcontrib>Wu, Hongle</creatorcontrib><creatorcontrib>Wu, Buling</creatorcontrib><creatorcontrib>Guo, Jinshan</creatorcontrib><creatorcontrib>Fang, Fuchun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Wei</au><au>Zhou, Bangyi</au><au>Luo, Yifei</au><au>Chen, Yuanting</au><au>Chen, Zehao</au><au>Wu, Keke</au><au>Wu, Hongle</au><au>Wu, Buling</au><au>Guo, Jinshan</au><au>Fang, Fuchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optimized Decellularized Extracellular Matrix from Dental Pulp Stem Cell Sheets Promotes Axonal Regeneration by Multiple Modes in Spinal Cord Injury Rats</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2025-01</date><risdate>2025</risdate><volume>14</volume><issue>1</issue><spage>e2402312</spage><epage>n/a</epage><pages>e2402312-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>In the field of tissue engineering, the extracellular matrix (ECM) is considered an important element for promoting neural regeneration after spinal cord injury (SCI). Dental pulp stem cells (DPSCs), mesenchymal stem cells that originate from the neural crest, are easy to harvest and culture in vitro, express a variety of neurotrophic factors (NTFs) and deposit a large amount of ECM, making them a good choice for stem cell‐ or ECM‐based treatment of SCI. In the present study, decellularized extracellular matrix (dECM) derived from DPSC sheets is used for the treatment of SCI. Optimization experiments reveal that incubating DPSC sheets with 1% Triton X‐100 for 5 min is the best procedure for preparing DPSC dECM. It is found that DPSC dECM promotes nerve repair and regeneration after SCI and restores hindlimb motor function in rats. Mechanistically, DPSC dECM facilitates the migration and neural differentiation of neural stem cells, as well as M2 polarization of microglia, and inhibits the formation of glial scars. This study suggests that the use of DPSC dECM is a potential strategy for the treatment of SCI.
Qiu et al. optimize the preparation of DPSC dECM and transplant it into a rat SCI model. They demonstrate a potential strategy of DPSC dECM promotes migration and neurogenic differentiation of neral stem cells, reduces the formation of glial scars, and regulates the immune microenvironment to execute the axonal regeneration, functional recovery.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39148180</pmid><doi>10.1002/adhm.202402312</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9947-7906</orcidid><orcidid>https://orcid.org/0000-0001-8097-4902</orcidid><orcidid>https://orcid.org/0000-0002-0090-8073</orcidid><orcidid>https://orcid.org/0000-0001-9002-146X</orcidid><orcidid>https://orcid.org/0000-0002-3032-6963</orcidid><orcidid>https://orcid.org/0000-0003-1294-479X</orcidid><orcidid>https://orcid.org/0000-0001-8039-1627</orcidid><orcidid>https://orcid.org/0000-0002-0139-3024</orcidid><orcidid>https://orcid.org/0000-0002-5548-5629</orcidid><orcidid>https://orcid.org/0000-0001-7070-0051</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2025-01, Vol.14 (1), p.e2402312-n/a |
issn | 2192-2640 2192-2659 2192-2659 |
language | eng |
recordid | cdi_proquest_miscellaneous_3093594237 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Animals Axons - metabolism Axons - physiology Cell culture Cell Differentiation decellularized extracellular matrix Decellularized Extracellular Matrix - chemistry Decellularized Extracellular Matrix - pharmacology Dental materials Dental pulp Dental Pulp - cytology dental pulp stem cells Extracellular matrix Leukocyte migration Male Mesenchymal stem cells Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - metabolism Microglia Nerve Regeneration - physiology Neural crest neural regeneration Neural stem cells Neural Stem Cells - cytology Neural Stem Cells - metabolism Neuronal-glial interactions Neurotrophic factors Rats Rats, Sprague-Dawley Regeneration Spinal cord injuries Spinal Cord Injuries - therapy spinal cord injury Stem cells Stem Cells - cytology Stem Cells - metabolism Tissue engineering |
title | An Optimized Decellularized Extracellular Matrix from Dental Pulp Stem Cell Sheets Promotes Axonal Regeneration by Multiple Modes in Spinal Cord Injury Rats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optimized%20Decellularized%20Extracellular%20Matrix%20from%20Dental%20Pulp%20Stem%20Cell%20Sheets%20Promotes%20Axonal%20Regeneration%20by%20Multiple%20Modes%20in%20Spinal%20Cord%20Injury%20Rats&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Qiu,%20Wei&rft.date=2025-01&rft.volume=14&rft.issue=1&rft.spage=e2402312&rft.epage=n/a&rft.pages=e2402312-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202402312&rft_dat=%3Cproquest_cross%3E3093594237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3150685370&rft_id=info:pmid/39148180&rfr_iscdi=true |