Reconfigurable Vertical Phototransistor with MoTe2 Homojunction for High-Speed Rectifier and Multivalued Logical Circuits
The most reported two-dimensional (2D) reconfigurable multivalued logic (RMVL) devices primarily involve a planar configuration and carrier transport, which limits the high-density circuit integration and high-speed logic operation. In this work, the vertical transistors with reconfigurable MoTe2 ho...
Gespeichert in:
Veröffentlicht in: | ACS nano 2024-08, Vol.18 (34), p.23702 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The most reported two-dimensional (2D) reconfigurable multivalued logic (RMVL) devices primarily involve a planar configuration and carrier transport, which limits the high-density circuit integration and high-speed logic operation. In this work, the vertical transistors with reconfigurable MoTe2 homojunction are developed for low-power, high-speed, multivalued logic circuits. Through top/bottom dual-gate modulation, the transistors can be configured into four modes: P-i-N, N-i-P, P-i-P, and N-i-N. The reconfigurable rectifying and photovoltaic behaviors are observed in P-i-N and N-i-P configurations, exhibiting ideal diode characteristics with a current rectification ratio over 105 and sign-reversible photovoltaic response with a photoswitching ratio up to 7.44 × 105. Taking advantage of the seamless homogeneous integration and short vertical channel architecture, the transistor can operate as an electrical switch with an ultrafast speed of 680 ns, surpassing the conventional p-n diode. The MoTe2 half-wave rectifier is then applied in high-frequency integrated circuits using both square wave and sinusoidal waveforms. By applying an electrical pulse with a 1/4 phase difference between two input signals, the RMVL circuit has been achieved. This work proposes a universal and reconfigurable vertical transistor, enabled by dual-gate electrostatic doping on top/bottom sides of MoTe2 homojunction, suggesting a high integration device scheme for high-speed RMVL circuits and systems.The most reported two-dimensional (2D) reconfigurable multivalued logic (RMVL) devices primarily involve a planar configuration and carrier transport, which limits the high-density circuit integration and high-speed logic operation. In this work, the vertical transistors with reconfigurable MoTe2 homojunction are developed for low-power, high-speed, multivalued logic circuits. Through top/bottom dual-gate modulation, the transistors can be configured into four modes: P-i-N, N-i-P, P-i-P, and N-i-N. The reconfigurable rectifying and photovoltaic behaviors are observed in P-i-N and N-i-P configurations, exhibiting ideal diode characteristics with a current rectification ratio over 105 and sign-reversible photovoltaic response with a photoswitching ratio up to 7.44 × 105. Taking advantage of the seamless homogeneous integration and short vertical channel architecture, the transistor can operate as an electrical switch with an ultrafast speed of 680 ns, surpassing the conventional p-n diod |
---|---|
ISSN: | 1936-086X 1936-086X |
DOI: | 10.1021/acsnano.4c08345 |