Predictive performance of multi-model approaches for model-informed precision dosing of piperacillin in critically ill patients

•Multi-model approaches potentially increase the applicability of MIPD.•No need for individual model selection if at least one TDM-sample is available.•Comparable or better predictive performance compared to best single models.•Model averaging algorithm performs better compared to model selection al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of antimicrobial agents 2024-10, Vol.64 (4), p.107305, Article 107305
Hauptverfasser: Schatz, Lea Marie, Greppmair, Sebastian, Kunzelmann, Alexandra K., Starp, Johannes, Brinkmann, Alexander, Roehr, Anka, Frey, Otto, Hagel, Stefan, Dorn, Christoph, Zoller, Michael, Scharf, Christina, Wicha, Sebastian G., Liebchen, Uwe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 107305
container_title International journal of antimicrobial agents
container_volume 64
creator Schatz, Lea Marie
Greppmair, Sebastian
Kunzelmann, Alexandra K.
Starp, Johannes
Brinkmann, Alexander
Roehr, Anka
Frey, Otto
Hagel, Stefan
Dorn, Christoph
Zoller, Michael
Scharf, Christina
Wicha, Sebastian G.
Liebchen, Uwe
description •Multi-model approaches potentially increase the applicability of MIPD.•No need for individual model selection if at least one TDM-sample is available.•Comparable or better predictive performance compared to best single models.•Model averaging algorithm performs better compared to model selection algorithm. Piperacillin (PIP)/tazobactam is a frequently prescribed antibiotic; however, over- or underdosing may contribute to toxicity, therapeutic failure, and development of antimicrobial resistance. An external evaluation of 24 published PIP-models demonstrated that model-informed precision dosing (MIPD) can enhance target attainment. Employing various candidate models, this study aimed to assess the predictive performance of different MIPD-approaches comparing (i) a single-model approach, (ii) a model selection algorithm (MSA) and (iii) a model averaging algorithm (MAA). Precision, accuracy and expected target attainment, considering either initial (B1) or initial and secondary (B2) therapeutic drug monitoring (TDM)-samples per patient, were assessed in a multicentre dataset (561 patients, 11 German centres, 3654 TDM-samples). The results demonstrated a slight superiority in predictive performance using MAA in B1, regardless of the candidate models, compared to MSA and the best single models (MAA, MSA, best single models: inaccuracy ±3%, ±10%, ±8%; imprecision: 73%). The inclusion of a second TDM-sample notably improved precision and target attainment for all MIPD-approaches, particularly within the context of MSA and most of the single models. The expected target attainment is maximized (up to >90%) when the TDM-sample is integrated within 24 h. In conclusion, MAA streamlines MIPD by reducing the risk of selecting an inappropriate model for specific patients. Therefore, MIPD of PIP using MAA implicates further optimisation of antibiotic exposure in critically ill patients, by improving predictive performance with only one sample available for Bayesian forecasting, safety, and usability in clinical practice. [Display omitted]
doi_str_mv 10.1016/j.ijantimicag.2024.107305
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3093593676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924857924002218</els_id><sourcerecordid>3093593676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-39e789eee46ba1e407f0ea3ee46fd4a303afc38c19362011424af7d6b4072c963</originalsourceid><addsrcrecordid>eNqNkcFuGyEQhlHVqHadvEJEb72sCwu7mGNlNWmlSMkhOSPMzjpjscsWcKSc-uph47TKsRISYvT9DPNByBfO1pzx9tthjQc7ZhzQ2f26ZrUsdSVY84Es-UbVldJcfCRLpmtZbRqlF-RzSgfGeCNk84kshOay1VotyZ-7CB26jE9AJ4h9iIMdHdDQ0-HoM1ZD6MBTO00xWPcIiRaEvhYrHGccOjpFcJgwjLQLCcf9nJ6wXGcdeo8jLctFzOW53j_TUqOTzQhjTufkrLc-wcXbviIPVz_utz-rm9vrX9vvN5UTrM6V0KA2GgBku7McJFM9Ayvmc99JK5iwvRMbx7Voa8a5rKXtVdfuClk73YoV-Xq6t8zx-wgpmwGTA-_tCOGYjGBaNCWsZlSfUBdDShF6M0UcbHw2nJnZvzmYd_7N7N-c_Jfs5Vub466Y-Zf8K7wA2xMAZdgnhGiSKyJc-YQiMZsu4H-0eQETcJ_F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093593676</pqid></control><display><type>article</type><title>Predictive performance of multi-model approaches for model-informed precision dosing of piperacillin in critically ill patients</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Schatz, Lea Marie ; Greppmair, Sebastian ; Kunzelmann, Alexandra K. ; Starp, Johannes ; Brinkmann, Alexander ; Roehr, Anka ; Frey, Otto ; Hagel, Stefan ; Dorn, Christoph ; Zoller, Michael ; Scharf, Christina ; Wicha, Sebastian G. ; Liebchen, Uwe</creator><creatorcontrib>Schatz, Lea Marie ; Greppmair, Sebastian ; Kunzelmann, Alexandra K. ; Starp, Johannes ; Brinkmann, Alexander ; Roehr, Anka ; Frey, Otto ; Hagel, Stefan ; Dorn, Christoph ; Zoller, Michael ; Scharf, Christina ; Wicha, Sebastian G. ; Liebchen, Uwe</creatorcontrib><description>•Multi-model approaches potentially increase the applicability of MIPD.•No need for individual model selection if at least one TDM-sample is available.•Comparable or better predictive performance compared to best single models.•Model averaging algorithm performs better compared to model selection algorithm. Piperacillin (PIP)/tazobactam is a frequently prescribed antibiotic; however, over- or underdosing may contribute to toxicity, therapeutic failure, and development of antimicrobial resistance. An external evaluation of 24 published PIP-models demonstrated that model-informed precision dosing (MIPD) can enhance target attainment. Employing various candidate models, this study aimed to assess the predictive performance of different MIPD-approaches comparing (i) a single-model approach, (ii) a model selection algorithm (MSA) and (iii) a model averaging algorithm (MAA). Precision, accuracy and expected target attainment, considering either initial (B1) or initial and secondary (B2) therapeutic drug monitoring (TDM)-samples per patient, were assessed in a multicentre dataset (561 patients, 11 German centres, 3654 TDM-samples). The results demonstrated a slight superiority in predictive performance using MAA in B1, regardless of the candidate models, compared to MSA and the best single models (MAA, MSA, best single models: inaccuracy ±3%, ±10%, ±8%; imprecision: &lt;25%, &lt;31%, &lt;28%; expected target attainment &gt;77%, &gt;71%, &gt;73%). The inclusion of a second TDM-sample notably improved precision and target attainment for all MIPD-approaches, particularly within the context of MSA and most of the single models. The expected target attainment is maximized (up to &gt;90%) when the TDM-sample is integrated within 24 h. In conclusion, MAA streamlines MIPD by reducing the risk of selecting an inappropriate model for specific patients. Therefore, MIPD of PIP using MAA implicates further optimisation of antibiotic exposure in critically ill patients, by improving predictive performance with only one sample available for Bayesian forecasting, safety, and usability in clinical practice. [Display omitted]</description><identifier>ISSN: 0924-8579</identifier><identifier>ISSN: 1872-7913</identifier><identifier>EISSN: 1872-7913</identifier><identifier>DOI: 10.1016/j.ijantimicag.2024.107305</identifier><identifier>PMID: 39146997</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Aged ; Algorithms ; Anti-Bacterial Agents - administration &amp; dosage ; Anti-Bacterial Agents - therapeutic use ; Critical Illness ; Critically ill ; Drug Monitoring - methods ; Female ; Germany ; Humans ; Intensive care unit ; Male ; Middle Aged ; Model-informed precision dosing ; Piperacillin - administration &amp; dosage ; Piperacillin - pharmacokinetics ; Piperacillin - therapeutic use ; Piperacillin, Tazobactam Drug Combination - administration &amp; dosage ; Population pharmacokinetics ; Sepsis ; Therapeutic drug monitoring</subject><ispartof>International journal of antimicrobial agents, 2024-10, Vol.64 (4), p.107305, Article 107305</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-39e789eee46ba1e407f0ea3ee46fd4a303afc38c19362011424af7d6b4072c963</cites><orcidid>0000-0001-9482-5094 ; 0009-0002-9076-3943 ; 0000-0002-2560-9598 ; 0000-0002-8773-4845 ; 0000-0002-2954-5130 ; 0000-0002-4375-0923 ; 0009-0007-9849-9901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0924857924002218$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39146997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schatz, Lea Marie</creatorcontrib><creatorcontrib>Greppmair, Sebastian</creatorcontrib><creatorcontrib>Kunzelmann, Alexandra K.</creatorcontrib><creatorcontrib>Starp, Johannes</creatorcontrib><creatorcontrib>Brinkmann, Alexander</creatorcontrib><creatorcontrib>Roehr, Anka</creatorcontrib><creatorcontrib>Frey, Otto</creatorcontrib><creatorcontrib>Hagel, Stefan</creatorcontrib><creatorcontrib>Dorn, Christoph</creatorcontrib><creatorcontrib>Zoller, Michael</creatorcontrib><creatorcontrib>Scharf, Christina</creatorcontrib><creatorcontrib>Wicha, Sebastian G.</creatorcontrib><creatorcontrib>Liebchen, Uwe</creatorcontrib><title>Predictive performance of multi-model approaches for model-informed precision dosing of piperacillin in critically ill patients</title><title>International journal of antimicrobial agents</title><addtitle>Int J Antimicrob Agents</addtitle><description>•Multi-model approaches potentially increase the applicability of MIPD.•No need for individual model selection if at least one TDM-sample is available.•Comparable or better predictive performance compared to best single models.•Model averaging algorithm performs better compared to model selection algorithm. Piperacillin (PIP)/tazobactam is a frequently prescribed antibiotic; however, over- or underdosing may contribute to toxicity, therapeutic failure, and development of antimicrobial resistance. An external evaluation of 24 published PIP-models demonstrated that model-informed precision dosing (MIPD) can enhance target attainment. Employing various candidate models, this study aimed to assess the predictive performance of different MIPD-approaches comparing (i) a single-model approach, (ii) a model selection algorithm (MSA) and (iii) a model averaging algorithm (MAA). Precision, accuracy and expected target attainment, considering either initial (B1) or initial and secondary (B2) therapeutic drug monitoring (TDM)-samples per patient, were assessed in a multicentre dataset (561 patients, 11 German centres, 3654 TDM-samples). The results demonstrated a slight superiority in predictive performance using MAA in B1, regardless of the candidate models, compared to MSA and the best single models (MAA, MSA, best single models: inaccuracy ±3%, ±10%, ±8%; imprecision: &lt;25%, &lt;31%, &lt;28%; expected target attainment &gt;77%, &gt;71%, &gt;73%). The inclusion of a second TDM-sample notably improved precision and target attainment for all MIPD-approaches, particularly within the context of MSA and most of the single models. The expected target attainment is maximized (up to &gt;90%) when the TDM-sample is integrated within 24 h. In conclusion, MAA streamlines MIPD by reducing the risk of selecting an inappropriate model for specific patients. Therefore, MIPD of PIP using MAA implicates further optimisation of antibiotic exposure in critically ill patients, by improving predictive performance with only one sample available for Bayesian forecasting, safety, and usability in clinical practice. [Display omitted]</description><subject>Aged</subject><subject>Algorithms</subject><subject>Anti-Bacterial Agents - administration &amp; dosage</subject><subject>Anti-Bacterial Agents - therapeutic use</subject><subject>Critical Illness</subject><subject>Critically ill</subject><subject>Drug Monitoring - methods</subject><subject>Female</subject><subject>Germany</subject><subject>Humans</subject><subject>Intensive care unit</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Model-informed precision dosing</subject><subject>Piperacillin - administration &amp; dosage</subject><subject>Piperacillin - pharmacokinetics</subject><subject>Piperacillin - therapeutic use</subject><subject>Piperacillin, Tazobactam Drug Combination - administration &amp; dosage</subject><subject>Population pharmacokinetics</subject><subject>Sepsis</subject><subject>Therapeutic drug monitoring</subject><issn>0924-8579</issn><issn>1872-7913</issn><issn>1872-7913</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFuGyEQhlHVqHadvEJEb72sCwu7mGNlNWmlSMkhOSPMzjpjscsWcKSc-uph47TKsRISYvT9DPNByBfO1pzx9tthjQc7ZhzQ2f26ZrUsdSVY84Es-UbVldJcfCRLpmtZbRqlF-RzSgfGeCNk84kshOay1VotyZ-7CB26jE9AJ4h9iIMdHdDQ0-HoM1ZD6MBTO00xWPcIiRaEvhYrHGccOjpFcJgwjLQLCcf9nJ6wXGcdeo8jLctFzOW53j_TUqOTzQhjTufkrLc-wcXbviIPVz_utz-rm9vrX9vvN5UTrM6V0KA2GgBku7McJFM9Ayvmc99JK5iwvRMbx7Voa8a5rKXtVdfuClk73YoV-Xq6t8zx-wgpmwGTA-_tCOGYjGBaNCWsZlSfUBdDShF6M0UcbHw2nJnZvzmYd_7N7N-c_Jfs5Vub466Y-Zf8K7wA2xMAZdgnhGiSKyJc-YQiMZsu4H-0eQETcJ_F</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Schatz, Lea Marie</creator><creator>Greppmair, Sebastian</creator><creator>Kunzelmann, Alexandra K.</creator><creator>Starp, Johannes</creator><creator>Brinkmann, Alexander</creator><creator>Roehr, Anka</creator><creator>Frey, Otto</creator><creator>Hagel, Stefan</creator><creator>Dorn, Christoph</creator><creator>Zoller, Michael</creator><creator>Scharf, Christina</creator><creator>Wicha, Sebastian G.</creator><creator>Liebchen, Uwe</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9482-5094</orcidid><orcidid>https://orcid.org/0009-0002-9076-3943</orcidid><orcidid>https://orcid.org/0000-0002-2560-9598</orcidid><orcidid>https://orcid.org/0000-0002-8773-4845</orcidid><orcidid>https://orcid.org/0000-0002-2954-5130</orcidid><orcidid>https://orcid.org/0000-0002-4375-0923</orcidid><orcidid>https://orcid.org/0009-0007-9849-9901</orcidid></search><sort><creationdate>202410</creationdate><title>Predictive performance of multi-model approaches for model-informed precision dosing of piperacillin in critically ill patients</title><author>Schatz, Lea Marie ; Greppmair, Sebastian ; Kunzelmann, Alexandra K. ; Starp, Johannes ; Brinkmann, Alexander ; Roehr, Anka ; Frey, Otto ; Hagel, Stefan ; Dorn, Christoph ; Zoller, Michael ; Scharf, Christina ; Wicha, Sebastian G. ; Liebchen, Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-39e789eee46ba1e407f0ea3ee46fd4a303afc38c19362011424af7d6b4072c963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>Algorithms</topic><topic>Anti-Bacterial Agents - administration &amp; dosage</topic><topic>Anti-Bacterial Agents - therapeutic use</topic><topic>Critical Illness</topic><topic>Critically ill</topic><topic>Drug Monitoring - methods</topic><topic>Female</topic><topic>Germany</topic><topic>Humans</topic><topic>Intensive care unit</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Model-informed precision dosing</topic><topic>Piperacillin - administration &amp; dosage</topic><topic>Piperacillin - pharmacokinetics</topic><topic>Piperacillin - therapeutic use</topic><topic>Piperacillin, Tazobactam Drug Combination - administration &amp; dosage</topic><topic>Population pharmacokinetics</topic><topic>Sepsis</topic><topic>Therapeutic drug monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schatz, Lea Marie</creatorcontrib><creatorcontrib>Greppmair, Sebastian</creatorcontrib><creatorcontrib>Kunzelmann, Alexandra K.</creatorcontrib><creatorcontrib>Starp, Johannes</creatorcontrib><creatorcontrib>Brinkmann, Alexander</creatorcontrib><creatorcontrib>Roehr, Anka</creatorcontrib><creatorcontrib>Frey, Otto</creatorcontrib><creatorcontrib>Hagel, Stefan</creatorcontrib><creatorcontrib>Dorn, Christoph</creatorcontrib><creatorcontrib>Zoller, Michael</creatorcontrib><creatorcontrib>Scharf, Christina</creatorcontrib><creatorcontrib>Wicha, Sebastian G.</creatorcontrib><creatorcontrib>Liebchen, Uwe</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of antimicrobial agents</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schatz, Lea Marie</au><au>Greppmair, Sebastian</au><au>Kunzelmann, Alexandra K.</au><au>Starp, Johannes</au><au>Brinkmann, Alexander</au><au>Roehr, Anka</au><au>Frey, Otto</au><au>Hagel, Stefan</au><au>Dorn, Christoph</au><au>Zoller, Michael</au><au>Scharf, Christina</au><au>Wicha, Sebastian G.</au><au>Liebchen, Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive performance of multi-model approaches for model-informed precision dosing of piperacillin in critically ill patients</atitle><jtitle>International journal of antimicrobial agents</jtitle><addtitle>Int J Antimicrob Agents</addtitle><date>2024-10</date><risdate>2024</risdate><volume>64</volume><issue>4</issue><spage>107305</spage><pages>107305-</pages><artnum>107305</artnum><issn>0924-8579</issn><issn>1872-7913</issn><eissn>1872-7913</eissn><abstract>•Multi-model approaches potentially increase the applicability of MIPD.•No need for individual model selection if at least one TDM-sample is available.•Comparable or better predictive performance compared to best single models.•Model averaging algorithm performs better compared to model selection algorithm. Piperacillin (PIP)/tazobactam is a frequently prescribed antibiotic; however, over- or underdosing may contribute to toxicity, therapeutic failure, and development of antimicrobial resistance. An external evaluation of 24 published PIP-models demonstrated that model-informed precision dosing (MIPD) can enhance target attainment. Employing various candidate models, this study aimed to assess the predictive performance of different MIPD-approaches comparing (i) a single-model approach, (ii) a model selection algorithm (MSA) and (iii) a model averaging algorithm (MAA). Precision, accuracy and expected target attainment, considering either initial (B1) or initial and secondary (B2) therapeutic drug monitoring (TDM)-samples per patient, were assessed in a multicentre dataset (561 patients, 11 German centres, 3654 TDM-samples). The results demonstrated a slight superiority in predictive performance using MAA in B1, regardless of the candidate models, compared to MSA and the best single models (MAA, MSA, best single models: inaccuracy ±3%, ±10%, ±8%; imprecision: &lt;25%, &lt;31%, &lt;28%; expected target attainment &gt;77%, &gt;71%, &gt;73%). The inclusion of a second TDM-sample notably improved precision and target attainment for all MIPD-approaches, particularly within the context of MSA and most of the single models. The expected target attainment is maximized (up to &gt;90%) when the TDM-sample is integrated within 24 h. In conclusion, MAA streamlines MIPD by reducing the risk of selecting an inappropriate model for specific patients. Therefore, MIPD of PIP using MAA implicates further optimisation of antibiotic exposure in critically ill patients, by improving predictive performance with only one sample available for Bayesian forecasting, safety, and usability in clinical practice. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>39146997</pmid><doi>10.1016/j.ijantimicag.2024.107305</doi><orcidid>https://orcid.org/0000-0001-9482-5094</orcidid><orcidid>https://orcid.org/0009-0002-9076-3943</orcidid><orcidid>https://orcid.org/0000-0002-2560-9598</orcidid><orcidid>https://orcid.org/0000-0002-8773-4845</orcidid><orcidid>https://orcid.org/0000-0002-2954-5130</orcidid><orcidid>https://orcid.org/0000-0002-4375-0923</orcidid><orcidid>https://orcid.org/0009-0007-9849-9901</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-8579
ispartof International journal of antimicrobial agents, 2024-10, Vol.64 (4), p.107305, Article 107305
issn 0924-8579
1872-7913
1872-7913
language eng
recordid cdi_proquest_miscellaneous_3093593676
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Aged
Algorithms
Anti-Bacterial Agents - administration & dosage
Anti-Bacterial Agents - therapeutic use
Critical Illness
Critically ill
Drug Monitoring - methods
Female
Germany
Humans
Intensive care unit
Male
Middle Aged
Model-informed precision dosing
Piperacillin - administration & dosage
Piperacillin - pharmacokinetics
Piperacillin - therapeutic use
Piperacillin, Tazobactam Drug Combination - administration & dosage
Population pharmacokinetics
Sepsis
Therapeutic drug monitoring
title Predictive performance of multi-model approaches for model-informed precision dosing of piperacillin in critically ill patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A22%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20performance%20of%20multi-model%20approaches%20for%20model-informed%20precision%20dosing%20of%20piperacillin%20in%20critically%20ill%20patients&rft.jtitle=International%20journal%20of%20antimicrobial%20agents&rft.au=Schatz,%20Lea%20Marie&rft.date=2024-10&rft.volume=64&rft.issue=4&rft.spage=107305&rft.pages=107305-&rft.artnum=107305&rft.issn=0924-8579&rft.eissn=1872-7913&rft_id=info:doi/10.1016/j.ijantimicag.2024.107305&rft_dat=%3Cproquest_cross%3E3093593676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093593676&rft_id=info:pmid/39146997&rft_els_id=S0924857924002218&rfr_iscdi=true