Optical-Propulsion Metastructures
Pulsed laser micropropulsion (PLMP) offers a promising avenue for miniature space craft, yet conventional propellants face challenges in balancing efficiency and stability. An optical-propulsion metastructure strategy using metal-organic frameworks (MOFs) is presented to generate graphene-metal meta...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-10, Vol.36 (41), p.e2406384 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pulsed laser micropropulsion (PLMP) offers a promising avenue for miniature space craft, yet conventional propellants face challenges in balancing efficiency and stability. An optical-propulsion metastructure strategy using metal-organic frameworks (MOFs) is presented to generate graphene-metal metastructures (GMM), specifically GMM-(HKUST-1), which significantly enhances PLMP performance. This novel approach leverages the unique interaction between pulsed lasers and the precisely engineered GMMs-comprising optimized metal nanoparticle size, graphene layers, and inter-particle gaps-to boost both propulsion efficiency and stability. Experimental and numerical analyses reveal that GMM-(HKUST-1) achieves aspecific impulse of 1072.94 s, ablation efficiency of 51.22%, and impulse thrust per mass of 105.15 µN µg
, surpassing traditional propellants. With an average particle size of ≈12 nm and a density of 0.958 g cm
, these metastructures exhibit 99% light absorption efficiency and maintain stability under atmospheric and humid conditions. The graphene nanolayer efficiently absorbs and converts laser energy, while the metal nanostructures enhance light-matter interactions, promoting energy transfer and material stability. These findings suggest that this GMM-based optical-propulsion strategy can revolutionize microspacecraft propulsion and energy systems, offering significant advancements across various domains. |
---|---|
ISSN: | 0935-9648 1521-4095 1521-4095 |
DOI: | 10.1002/adma.202406384 |