Hydrogen peroxide stabilization with silica xerogel for paper-based analytical devices and its application to phenolic compounds determination
Hydrogen peroxide is a key reagent in many analytical assays. At the same time, it is rather unstable and prone to evaporation. For these reasons, its application in sensors requiring reagents in solid state, for example in paper-based microfluidics, is hindered. Usually in paper-based analytical de...
Gespeichert in:
Veröffentlicht in: | Analytica chimica acta 2024-09, Vol.1320, p.343028, Article 343028 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 343028 |
container_title | Analytica chimica acta |
container_volume | 1320 |
creator | Lewińska, Izabela Bącal, Paweł Tymecki, Łukasz |
description | Hydrogen peroxide is a key reagent in many analytical assays. At the same time, it is rather unstable and prone to evaporation. For these reasons, its application in sensors requiring reagents in solid state, for example in paper-based microfluidics, is hindered. Usually in paper-based analytical devices reagents are stored in a dried form within paper matrix until the device is used. This approach is not feasible in case of hydrogen peroxide. Here, hydrogen peroxide stabilization on paper with the aid of silica xerogel was studied and optimized to create long-term stable systems which rapidly deliver hydrogen peroxide.
The variables affecting hydrogen peroxide stability such as gelation time, silica to H2O2 ratio, type of solid support and storage conditions were optimized to find the combination of variables providing stable H2O2 concentration for the longest time possible. Such paper-silica-H2O2 composites allow to maintain steady hydrogen peroxide concentration for at least 27 days in the optimal conditions. Hydrogen peroxide is rapidly released from silica-paper matrix within a few minutes upon contact with water, without any byproducts. The obtained systems were characterized using scanning electron microscopy with energy dispersive spectroscopy and infrared spectroscopy, revealing that silica is present as a thin film covering cellulose fibers. Finally, to test the developed hydrogen peroxide stabilization method in real sensing scenario, a proof-of-concept paper-based sensor was created for phenolic content determination in fruits and wine.
The outcome of this research will open new avenues in the development of user-friendly, long-term stable paper-based analytical devices which utilize hydrogen peroxide as one of reagents. Owing to the fact, that silica matrix is insoluble in water, the proposed H2O2 stabilization method is compatible with most detection schemes without the risk of interfering with the assay.
[Display omitted]
•Hydrogen peroxide stabilization on paper with silica xerogel was studied.•Factors affecting hydrogen peroxide stability were optimized.•H2O2-silica-paper composites retain a stable H2O2 amount for at least 27 days.•Paper-based analytical device for phenolic content determination was developed. |
doi_str_mv | 10.1016/j.aca.2024.343028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3093172318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003267024008298</els_id><sourcerecordid>3093172318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-57f808682172036df44a1d7c809e50bf39b65981526e127509ca7f24440ca4483</originalsourceid><addsrcrecordid>eNp9kctOHDEQRS0UBAPJB7CJvMymJ-VHv8QqQrwkpGzC2nLb1eBRd7tjewiTj-CbcTOQZValKp1zJfsScsZgzYBV3zdrbfSaA5drIQXw5oCsWFOLQgouP5EVAIiCVzUck5MYN3nlDOQRORYtk7xuxYq83Oxs8A840RmDf3YWaUy6c4P7q5PzE_3j0iONeTeaPuOCDrT3gc46C0WnI1qqJz3sUiYGavHJGYz5ZKlLec7zor5FJU_nR5x8PlDjx9lvJxuzkTCMbnpjPpPDXg8Rv7zPU3J_dfnr4qa4-3l9e_HjrjBclKko676Bpmo4qzmIyvZSamZr00CLJXS9aLuqbBtW8goZr0toja57LqUEo6VsxCn5ts-dg_-9xZjU6KLBYdAT-m1UAlqRswVbULZHTfAxBuzVHNyow04xUEsNaqNyDWqpQe1ryM7X9_htN6L9Z3z8ewbO9wDmRz45DCoah5NB6wKapKx3_4l_BWFcmf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093172318</pqid></control><display><type>article</type><title>Hydrogen peroxide stabilization with silica xerogel for paper-based analytical devices and its application to phenolic compounds determination</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lewińska, Izabela ; Bącal, Paweł ; Tymecki, Łukasz</creator><creatorcontrib>Lewińska, Izabela ; Bącal, Paweł ; Tymecki, Łukasz</creatorcontrib><description>Hydrogen peroxide is a key reagent in many analytical assays. At the same time, it is rather unstable and prone to evaporation. For these reasons, its application in sensors requiring reagents in solid state, for example in paper-based microfluidics, is hindered. Usually in paper-based analytical devices reagents are stored in a dried form within paper matrix until the device is used. This approach is not feasible in case of hydrogen peroxide. Here, hydrogen peroxide stabilization on paper with the aid of silica xerogel was studied and optimized to create long-term stable systems which rapidly deliver hydrogen peroxide.
The variables affecting hydrogen peroxide stability such as gelation time, silica to H2O2 ratio, type of solid support and storage conditions were optimized to find the combination of variables providing stable H2O2 concentration for the longest time possible. Such paper-silica-H2O2 composites allow to maintain steady hydrogen peroxide concentration for at least 27 days in the optimal conditions. Hydrogen peroxide is rapidly released from silica-paper matrix within a few minutes upon contact with water, without any byproducts. The obtained systems were characterized using scanning electron microscopy with energy dispersive spectroscopy and infrared spectroscopy, revealing that silica is present as a thin film covering cellulose fibers. Finally, to test the developed hydrogen peroxide stabilization method in real sensing scenario, a proof-of-concept paper-based sensor was created for phenolic content determination in fruits and wine.
The outcome of this research will open new avenues in the development of user-friendly, long-term stable paper-based analytical devices which utilize hydrogen peroxide as one of reagents. Owing to the fact, that silica matrix is insoluble in water, the proposed H2O2 stabilization method is compatible with most detection schemes without the risk of interfering with the assay.
[Display omitted]
•Hydrogen peroxide stabilization on paper with silica xerogel was studied.•Factors affecting hydrogen peroxide stability were optimized.•H2O2-silica-paper composites retain a stable H2O2 amount for at least 27 days.•Paper-based analytical device for phenolic content determination was developed.</description><identifier>ISSN: 0003-2670</identifier><identifier>ISSN: 1873-4324</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2024.343028</identifier><identifier>PMID: 39142793</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Hydrogen peroxide ; Paper-based analytical device ; Phenolic compounds ; Silica gel ; Xerogel</subject><ispartof>Analytica chimica acta, 2024-09, Vol.1320, p.343028, Article 343028</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c235t-57f808682172036df44a1d7c809e50bf39b65981526e127509ca7f24440ca4483</cites><orcidid>0000-0001-7935-639X ; 0000-0002-3332-8307 ; 0000-0002-9018-4960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aca.2024.343028$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39142793$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewińska, Izabela</creatorcontrib><creatorcontrib>Bącal, Paweł</creatorcontrib><creatorcontrib>Tymecki, Łukasz</creatorcontrib><title>Hydrogen peroxide stabilization with silica xerogel for paper-based analytical devices and its application to phenolic compounds determination</title><title>Analytica chimica acta</title><addtitle>Anal Chim Acta</addtitle><description>Hydrogen peroxide is a key reagent in many analytical assays. At the same time, it is rather unstable and prone to evaporation. For these reasons, its application in sensors requiring reagents in solid state, for example in paper-based microfluidics, is hindered. Usually in paper-based analytical devices reagents are stored in a dried form within paper matrix until the device is used. This approach is not feasible in case of hydrogen peroxide. Here, hydrogen peroxide stabilization on paper with the aid of silica xerogel was studied and optimized to create long-term stable systems which rapidly deliver hydrogen peroxide.
The variables affecting hydrogen peroxide stability such as gelation time, silica to H2O2 ratio, type of solid support and storage conditions were optimized to find the combination of variables providing stable H2O2 concentration for the longest time possible. Such paper-silica-H2O2 composites allow to maintain steady hydrogen peroxide concentration for at least 27 days in the optimal conditions. Hydrogen peroxide is rapidly released from silica-paper matrix within a few minutes upon contact with water, without any byproducts. The obtained systems were characterized using scanning electron microscopy with energy dispersive spectroscopy and infrared spectroscopy, revealing that silica is present as a thin film covering cellulose fibers. Finally, to test the developed hydrogen peroxide stabilization method in real sensing scenario, a proof-of-concept paper-based sensor was created for phenolic content determination in fruits and wine.
The outcome of this research will open new avenues in the development of user-friendly, long-term stable paper-based analytical devices which utilize hydrogen peroxide as one of reagents. Owing to the fact, that silica matrix is insoluble in water, the proposed H2O2 stabilization method is compatible with most detection schemes without the risk of interfering with the assay.
[Display omitted]
•Hydrogen peroxide stabilization on paper with silica xerogel was studied.•Factors affecting hydrogen peroxide stability were optimized.•H2O2-silica-paper composites retain a stable H2O2 amount for at least 27 days.•Paper-based analytical device for phenolic content determination was developed.</description><subject>Hydrogen peroxide</subject><subject>Paper-based analytical device</subject><subject>Phenolic compounds</subject><subject>Silica gel</subject><subject>Xerogel</subject><issn>0003-2670</issn><issn>1873-4324</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kctOHDEQRS0UBAPJB7CJvMymJ-VHv8QqQrwkpGzC2nLb1eBRd7tjewiTj-CbcTOQZValKp1zJfsScsZgzYBV3zdrbfSaA5drIQXw5oCsWFOLQgouP5EVAIiCVzUck5MYN3nlDOQRORYtk7xuxYq83Oxs8A840RmDf3YWaUy6c4P7q5PzE_3j0iONeTeaPuOCDrT3gc46C0WnI1qqJz3sUiYGavHJGYz5ZKlLec7zor5FJU_nR5x8PlDjx9lvJxuzkTCMbnpjPpPDXg8Rv7zPU3J_dfnr4qa4-3l9e_HjrjBclKko676Bpmo4qzmIyvZSamZr00CLJXS9aLuqbBtW8goZr0toja57LqUEo6VsxCn5ts-dg_-9xZjU6KLBYdAT-m1UAlqRswVbULZHTfAxBuzVHNyow04xUEsNaqNyDWqpQe1ryM7X9_htN6L9Z3z8ewbO9wDmRz45DCoah5NB6wKapKx3_4l_BWFcmf0</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Lewińska, Izabela</creator><creator>Bącal, Paweł</creator><creator>Tymecki, Łukasz</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7935-639X</orcidid><orcidid>https://orcid.org/0000-0002-3332-8307</orcidid><orcidid>https://orcid.org/0000-0002-9018-4960</orcidid></search><sort><creationdate>20240901</creationdate><title>Hydrogen peroxide stabilization with silica xerogel for paper-based analytical devices and its application to phenolic compounds determination</title><author>Lewińska, Izabela ; Bącal, Paweł ; Tymecki, Łukasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-57f808682172036df44a1d7c809e50bf39b65981526e127509ca7f24440ca4483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Hydrogen peroxide</topic><topic>Paper-based analytical device</topic><topic>Phenolic compounds</topic><topic>Silica gel</topic><topic>Xerogel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewińska, Izabela</creatorcontrib><creatorcontrib>Bącal, Paweł</creatorcontrib><creatorcontrib>Tymecki, Łukasz</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewińska, Izabela</au><au>Bącal, Paweł</au><au>Tymecki, Łukasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen peroxide stabilization with silica xerogel for paper-based analytical devices and its application to phenolic compounds determination</atitle><jtitle>Analytica chimica acta</jtitle><addtitle>Anal Chim Acta</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>1320</volume><spage>343028</spage><pages>343028-</pages><artnum>343028</artnum><issn>0003-2670</issn><issn>1873-4324</issn><eissn>1873-4324</eissn><abstract>Hydrogen peroxide is a key reagent in many analytical assays. At the same time, it is rather unstable and prone to evaporation. For these reasons, its application in sensors requiring reagents in solid state, for example in paper-based microfluidics, is hindered. Usually in paper-based analytical devices reagents are stored in a dried form within paper matrix until the device is used. This approach is not feasible in case of hydrogen peroxide. Here, hydrogen peroxide stabilization on paper with the aid of silica xerogel was studied and optimized to create long-term stable systems which rapidly deliver hydrogen peroxide.
The variables affecting hydrogen peroxide stability such as gelation time, silica to H2O2 ratio, type of solid support and storage conditions were optimized to find the combination of variables providing stable H2O2 concentration for the longest time possible. Such paper-silica-H2O2 composites allow to maintain steady hydrogen peroxide concentration for at least 27 days in the optimal conditions. Hydrogen peroxide is rapidly released from silica-paper matrix within a few minutes upon contact with water, without any byproducts. The obtained systems were characterized using scanning electron microscopy with energy dispersive spectroscopy and infrared spectroscopy, revealing that silica is present as a thin film covering cellulose fibers. Finally, to test the developed hydrogen peroxide stabilization method in real sensing scenario, a proof-of-concept paper-based sensor was created for phenolic content determination in fruits and wine.
The outcome of this research will open new avenues in the development of user-friendly, long-term stable paper-based analytical devices which utilize hydrogen peroxide as one of reagents. Owing to the fact, that silica matrix is insoluble in water, the proposed H2O2 stabilization method is compatible with most detection schemes without the risk of interfering with the assay.
[Display omitted]
•Hydrogen peroxide stabilization on paper with silica xerogel was studied.•Factors affecting hydrogen peroxide stability were optimized.•H2O2-silica-paper composites retain a stable H2O2 amount for at least 27 days.•Paper-based analytical device for phenolic content determination was developed.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39142793</pmid><doi>10.1016/j.aca.2024.343028</doi><orcidid>https://orcid.org/0000-0001-7935-639X</orcidid><orcidid>https://orcid.org/0000-0002-3332-8307</orcidid><orcidid>https://orcid.org/0000-0002-9018-4960</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2670 |
ispartof | Analytica chimica acta, 2024-09, Vol.1320, p.343028, Article 343028 |
issn | 0003-2670 1873-4324 1873-4324 |
language | eng |
recordid | cdi_proquest_miscellaneous_3093172318 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Hydrogen peroxide Paper-based analytical device Phenolic compounds Silica gel Xerogel |
title | Hydrogen peroxide stabilization with silica xerogel for paper-based analytical devices and its application to phenolic compounds determination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A14%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20peroxide%20stabilization%20with%20silica%20xerogel%20for%20paper-based%20analytical%20devices%20and%20its%20application%20to%20phenolic%20compounds%20determination&rft.jtitle=Analytica%20chimica%20acta&rft.au=Lewi%C5%84ska,%20Izabela&rft.date=2024-09-01&rft.volume=1320&rft.spage=343028&rft.pages=343028-&rft.artnum=343028&rft.issn=0003-2670&rft.eissn=1873-4324&rft_id=info:doi/10.1016/j.aca.2024.343028&rft_dat=%3Cproquest_cross%3E3093172318%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093172318&rft_id=info:pmid/39142793&rft_els_id=S0003267024008298&rfr_iscdi=true |