Research on sound quality prediction of vehicle interior noise using the human-ear physiological model
In order to improve the prediction accuracy of the sound quality of vehicle interior noise, a novel sound quality prediction model was proposed based on the physiological response predicted metrics, i.e., loudness, sharpness, and roughness. First, a human-ear sound transmission model was constructed...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2024-08, Vol.156 (2), p.989-1003 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1003 |
---|---|
container_issue | 2 |
container_start_page | 989 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 156 |
creator | Zhao, Yu Liu, Houguang Guo, Weiwei He, Zhiheng Yang, Jianhua Zhang, Zipeng |
description | In order to improve the prediction accuracy of the sound quality of vehicle interior noise, a novel sound quality prediction model was proposed based on the physiological response predicted metrics, i.e., loudness, sharpness, and roughness. First, a human-ear sound transmission model was constructed by combining the outer and middle ear finite element model with the cochlear transmission line model. This model converted external input noise into cochlear basilar membrane response. Second, the physiological perception models of loudness, sharpness, and roughness were constructed by transforming the basilar membrane response into sound perception related to neuronal firing. Finally, taking the calculated loudness, sharpness, and roughness of the physiological model and the subjective evaluation values of vehicle interior noise as the parameters, a sound quality prediction model was constructed by TabNet model. The results demonstrate that the loudness, sharpness, and roughness computed by the human-ear physiological model exhibit a stronger correlation with the subjective evaluation of sound quality annoyance compared to traditional psychoacoustic parameters. Furthermore, the average error percentage of sound quality prediction based on the physiological model is only 3.81%, which is lower than that based on traditional psychoacoustic parameters. |
doi_str_mv | 10.1121/10.0028130 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3092368412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092368412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c212t-a3e7ebd350c07edb4503f3cb410e2d48b7cdc7911a6c9a17c1c2fd83c50418ed3</originalsourceid><addsrcrecordid>eNp9kEtLxDAURoMozji68QdIlqJUc5M-lzL4ggFBdF3S5HYaSZtO0grz7-0wo0tXH5d7OItDyCWwOwAO99MyxnMQ7IjMIeEsyhMeH5M5YwyiuEjTGTkL4Ws6k1wUp2QmChBpKpI5qd8xoPSqoa6jwY2dpptRWjNsae9RGzWY6eFq-o2NURap6Qb0xnnaOROQjsF0azo0SJuxlV00uWjfbINx1q2Nkpa2TqM9Jye1tAEvDrsgn0-PH8uXaPX2_Lp8WEWKAx8iKTDDSouEKZahruKEiVqoKgaGXMd5lSmtsgJApqqQkClQvNa5UAmLIUctFuR67-2924wYhrI1QaG1skM3hlKwgos0j4FP6M0eVd6F4LEue29a6bclsHLXdbeHrhN8dfCOVYv6D_0NOQG3eyAoM8hdtP90PwwDgWk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092368412</pqid></control><display><type>article</type><title>Research on sound quality prediction of vehicle interior noise using the human-ear physiological model</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>AIP Acoustical Society of America</source><creator>Zhao, Yu ; Liu, Houguang ; Guo, Weiwei ; He, Zhiheng ; Yang, Jianhua ; Zhang, Zipeng</creator><creatorcontrib>Zhao, Yu ; Liu, Houguang ; Guo, Weiwei ; He, Zhiheng ; Yang, Jianhua ; Zhang, Zipeng</creatorcontrib><description>In order to improve the prediction accuracy of the sound quality of vehicle interior noise, a novel sound quality prediction model was proposed based on the physiological response predicted metrics, i.e., loudness, sharpness, and roughness. First, a human-ear sound transmission model was constructed by combining the outer and middle ear finite element model with the cochlear transmission line model. This model converted external input noise into cochlear basilar membrane response. Second, the physiological perception models of loudness, sharpness, and roughness were constructed by transforming the basilar membrane response into sound perception related to neuronal firing. Finally, taking the calculated loudness, sharpness, and roughness of the physiological model and the subjective evaluation values of vehicle interior noise as the parameters, a sound quality prediction model was constructed by TabNet model. The results demonstrate that the loudness, sharpness, and roughness computed by the human-ear physiological model exhibit a stronger correlation with the subjective evaluation of sound quality annoyance compared to traditional psychoacoustic parameters. Furthermore, the average error percentage of sound quality prediction based on the physiological model is only 3.81%, which is lower than that based on traditional psychoacoustic parameters.</description><identifier>ISSN: 0001-4966</identifier><identifier>ISSN: 1520-8524</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0028130</identifier><identifier>PMID: 39136635</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>United States</publisher><subject>Acoustic Stimulation - methods ; Auditory Perception - physiology ; Automobiles ; Basilar Membrane - physiology ; Cochlea - physiology ; Computer Simulation ; Ear, Middle - physiology ; Finite Element Analysis ; Humans ; Loudness Perception - physiology ; Models, Biological ; Noise ; Noise, Transportation ; Psychoacoustics</subject><ispartof>The Journal of the Acoustical Society of America, 2024-08, Vol.156 (2), p.989-1003</ispartof><rights>Acoustical Society of America</rights><rights>2024 Acoustical Society of America.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c212t-a3e7ebd350c07edb4503f3cb410e2d48b7cdc7911a6c9a17c1c2fd83c50418ed3</cites><orcidid>0000-0002-5450-5958 ; 0000-0001-5389-9142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0028130$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1564,4510,27923,27924,76155</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39136635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yu</creatorcontrib><creatorcontrib>Liu, Houguang</creatorcontrib><creatorcontrib>Guo, Weiwei</creatorcontrib><creatorcontrib>He, Zhiheng</creatorcontrib><creatorcontrib>Yang, Jianhua</creatorcontrib><creatorcontrib>Zhang, Zipeng</creatorcontrib><title>Research on sound quality prediction of vehicle interior noise using the human-ear physiological model</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>In order to improve the prediction accuracy of the sound quality of vehicle interior noise, a novel sound quality prediction model was proposed based on the physiological response predicted metrics, i.e., loudness, sharpness, and roughness. First, a human-ear sound transmission model was constructed by combining the outer and middle ear finite element model with the cochlear transmission line model. This model converted external input noise into cochlear basilar membrane response. Second, the physiological perception models of loudness, sharpness, and roughness were constructed by transforming the basilar membrane response into sound perception related to neuronal firing. Finally, taking the calculated loudness, sharpness, and roughness of the physiological model and the subjective evaluation values of vehicle interior noise as the parameters, a sound quality prediction model was constructed by TabNet model. The results demonstrate that the loudness, sharpness, and roughness computed by the human-ear physiological model exhibit a stronger correlation with the subjective evaluation of sound quality annoyance compared to traditional psychoacoustic parameters. Furthermore, the average error percentage of sound quality prediction based on the physiological model is only 3.81%, which is lower than that based on traditional psychoacoustic parameters.</description><subject>Acoustic Stimulation - methods</subject><subject>Auditory Perception - physiology</subject><subject>Automobiles</subject><subject>Basilar Membrane - physiology</subject><subject>Cochlea - physiology</subject><subject>Computer Simulation</subject><subject>Ear, Middle - physiology</subject><subject>Finite Element Analysis</subject><subject>Humans</subject><subject>Loudness Perception - physiology</subject><subject>Models, Biological</subject><subject>Noise</subject><subject>Noise, Transportation</subject><subject>Psychoacoustics</subject><issn>0001-4966</issn><issn>1520-8524</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLxDAURoMozji68QdIlqJUc5M-lzL4ggFBdF3S5HYaSZtO0grz7-0wo0tXH5d7OItDyCWwOwAO99MyxnMQ7IjMIeEsyhMeH5M5YwyiuEjTGTkL4Ws6k1wUp2QmChBpKpI5qd8xoPSqoa6jwY2dpptRWjNsae9RGzWY6eFq-o2NURap6Qb0xnnaOROQjsF0azo0SJuxlV00uWjfbINx1q2Nkpa2TqM9Jye1tAEvDrsgn0-PH8uXaPX2_Lp8WEWKAx8iKTDDSouEKZahruKEiVqoKgaGXMd5lSmtsgJApqqQkClQvNa5UAmLIUctFuR67-2924wYhrI1QaG1skM3hlKwgos0j4FP6M0eVd6F4LEue29a6bclsHLXdbeHrhN8dfCOVYv6D_0NOQG3eyAoM8hdtP90PwwDgWk</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Zhao, Yu</creator><creator>Liu, Houguang</creator><creator>Guo, Weiwei</creator><creator>He, Zhiheng</creator><creator>Yang, Jianhua</creator><creator>Zhang, Zipeng</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5450-5958</orcidid><orcidid>https://orcid.org/0000-0001-5389-9142</orcidid></search><sort><creationdate>202408</creationdate><title>Research on sound quality prediction of vehicle interior noise using the human-ear physiological model</title><author>Zhao, Yu ; Liu, Houguang ; Guo, Weiwei ; He, Zhiheng ; Yang, Jianhua ; Zhang, Zipeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c212t-a3e7ebd350c07edb4503f3cb410e2d48b7cdc7911a6c9a17c1c2fd83c50418ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic Stimulation - methods</topic><topic>Auditory Perception - physiology</topic><topic>Automobiles</topic><topic>Basilar Membrane - physiology</topic><topic>Cochlea - physiology</topic><topic>Computer Simulation</topic><topic>Ear, Middle - physiology</topic><topic>Finite Element Analysis</topic><topic>Humans</topic><topic>Loudness Perception - physiology</topic><topic>Models, Biological</topic><topic>Noise</topic><topic>Noise, Transportation</topic><topic>Psychoacoustics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yu</creatorcontrib><creatorcontrib>Liu, Houguang</creatorcontrib><creatorcontrib>Guo, Weiwei</creatorcontrib><creatorcontrib>He, Zhiheng</creatorcontrib><creatorcontrib>Yang, Jianhua</creatorcontrib><creatorcontrib>Zhang, Zipeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yu</au><au>Liu, Houguang</au><au>Guo, Weiwei</au><au>He, Zhiheng</au><au>Yang, Jianhua</au><au>Zhang, Zipeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on sound quality prediction of vehicle interior noise using the human-ear physiological model</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2024-08</date><risdate>2024</risdate><volume>156</volume><issue>2</issue><spage>989</spage><epage>1003</epage><pages>989-1003</pages><issn>0001-4966</issn><issn>1520-8524</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>In order to improve the prediction accuracy of the sound quality of vehicle interior noise, a novel sound quality prediction model was proposed based on the physiological response predicted metrics, i.e., loudness, sharpness, and roughness. First, a human-ear sound transmission model was constructed by combining the outer and middle ear finite element model with the cochlear transmission line model. This model converted external input noise into cochlear basilar membrane response. Second, the physiological perception models of loudness, sharpness, and roughness were constructed by transforming the basilar membrane response into sound perception related to neuronal firing. Finally, taking the calculated loudness, sharpness, and roughness of the physiological model and the subjective evaluation values of vehicle interior noise as the parameters, a sound quality prediction model was constructed by TabNet model. The results demonstrate that the loudness, sharpness, and roughness computed by the human-ear physiological model exhibit a stronger correlation with the subjective evaluation of sound quality annoyance compared to traditional psychoacoustic parameters. Furthermore, the average error percentage of sound quality prediction based on the physiological model is only 3.81%, which is lower than that based on traditional psychoacoustic parameters.</abstract><cop>United States</cop><pmid>39136635</pmid><doi>10.1121/10.0028130</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5450-5958</orcidid><orcidid>https://orcid.org/0000-0001-5389-9142</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2024-08, Vol.156 (2), p.989-1003 |
issn | 0001-4966 1520-8524 1520-8524 |
language | eng |
recordid | cdi_proquest_miscellaneous_3092368412 |
source | MEDLINE; AIP Journals Complete; AIP Acoustical Society of America |
subjects | Acoustic Stimulation - methods Auditory Perception - physiology Automobiles Basilar Membrane - physiology Cochlea - physiology Computer Simulation Ear, Middle - physiology Finite Element Analysis Humans Loudness Perception - physiology Models, Biological Noise Noise, Transportation Psychoacoustics |
title | Research on sound quality prediction of vehicle interior noise using the human-ear physiological model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A25%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20sound%20quality%20prediction%20of%20vehicle%20interior%20noise%20using%20the%20human-ear%20physiological%20model&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Zhao,%20Yu&rft.date=2024-08&rft.volume=156&rft.issue=2&rft.spage=989&rft.epage=1003&rft.pages=989-1003&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0028130&rft_dat=%3Cproquest_pubme%3E3092368412%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092368412&rft_id=info:pmid/39136635&rfr_iscdi=true |