Research on sound quality prediction of vehicle interior noise using the human-ear physiological model

In order to improve the prediction accuracy of the sound quality of vehicle interior noise, a novel sound quality prediction model was proposed based on the physiological response predicted metrics, i.e., loudness, sharpness, and roughness. First, a human-ear sound transmission model was constructed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2024-08, Vol.156 (2), p.989-1003
Hauptverfasser: Zhao, Yu, Liu, Houguang, Guo, Weiwei, He, Zhiheng, Yang, Jianhua, Zhang, Zipeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1003
container_issue 2
container_start_page 989
container_title The Journal of the Acoustical Society of America
container_volume 156
creator Zhao, Yu
Liu, Houguang
Guo, Weiwei
He, Zhiheng
Yang, Jianhua
Zhang, Zipeng
description In order to improve the prediction accuracy of the sound quality of vehicle interior noise, a novel sound quality prediction model was proposed based on the physiological response predicted metrics, i.e., loudness, sharpness, and roughness. First, a human-ear sound transmission model was constructed by combining the outer and middle ear finite element model with the cochlear transmission line model. This model converted external input noise into cochlear basilar membrane response. Second, the physiological perception models of loudness, sharpness, and roughness were constructed by transforming the basilar membrane response into sound perception related to neuronal firing. Finally, taking the calculated loudness, sharpness, and roughness of the physiological model and the subjective evaluation values of vehicle interior noise as the parameters, a sound quality prediction model was constructed by TabNet model. The results demonstrate that the loudness, sharpness, and roughness computed by the human-ear physiological model exhibit a stronger correlation with the subjective evaluation of sound quality annoyance compared to traditional psychoacoustic parameters. Furthermore, the average error percentage of sound quality prediction based on the physiological model is only 3.81%, which is lower than that based on traditional psychoacoustic parameters.
doi_str_mv 10.1121/10.0028130
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3092368412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092368412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c212t-a3e7ebd350c07edb4503f3cb410e2d48b7cdc7911a6c9a17c1c2fd83c50418ed3</originalsourceid><addsrcrecordid>eNp9kEtLxDAURoMozji68QdIlqJUc5M-lzL4ggFBdF3S5HYaSZtO0grz7-0wo0tXH5d7OItDyCWwOwAO99MyxnMQ7IjMIeEsyhMeH5M5YwyiuEjTGTkL4Ws6k1wUp2QmChBpKpI5qd8xoPSqoa6jwY2dpptRWjNsae9RGzWY6eFq-o2NURap6Qb0xnnaOROQjsF0azo0SJuxlV00uWjfbINx1q2Nkpa2TqM9Jye1tAEvDrsgn0-PH8uXaPX2_Lp8WEWKAx8iKTDDSouEKZahruKEiVqoKgaGXMd5lSmtsgJApqqQkClQvNa5UAmLIUctFuR67-2924wYhrI1QaG1skM3hlKwgos0j4FP6M0eVd6F4LEue29a6bclsHLXdbeHrhN8dfCOVYv6D_0NOQG3eyAoM8hdtP90PwwDgWk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092368412</pqid></control><display><type>article</type><title>Research on sound quality prediction of vehicle interior noise using the human-ear physiological model</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>AIP Acoustical Society of America</source><creator>Zhao, Yu ; Liu, Houguang ; Guo, Weiwei ; He, Zhiheng ; Yang, Jianhua ; Zhang, Zipeng</creator><creatorcontrib>Zhao, Yu ; Liu, Houguang ; Guo, Weiwei ; He, Zhiheng ; Yang, Jianhua ; Zhang, Zipeng</creatorcontrib><description>In order to improve the prediction accuracy of the sound quality of vehicle interior noise, a novel sound quality prediction model was proposed based on the physiological response predicted metrics, i.e., loudness, sharpness, and roughness. First, a human-ear sound transmission model was constructed by combining the outer and middle ear finite element model with the cochlear transmission line model. This model converted external input noise into cochlear basilar membrane response. Second, the physiological perception models of loudness, sharpness, and roughness were constructed by transforming the basilar membrane response into sound perception related to neuronal firing. Finally, taking the calculated loudness, sharpness, and roughness of the physiological model and the subjective evaluation values of vehicle interior noise as the parameters, a sound quality prediction model was constructed by TabNet model. The results demonstrate that the loudness, sharpness, and roughness computed by the human-ear physiological model exhibit a stronger correlation with the subjective evaluation of sound quality annoyance compared to traditional psychoacoustic parameters. Furthermore, the average error percentage of sound quality prediction based on the physiological model is only 3.81%, which is lower than that based on traditional psychoacoustic parameters.</description><identifier>ISSN: 0001-4966</identifier><identifier>ISSN: 1520-8524</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0028130</identifier><identifier>PMID: 39136635</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>United States</publisher><subject>Acoustic Stimulation - methods ; Auditory Perception - physiology ; Automobiles ; Basilar Membrane - physiology ; Cochlea - physiology ; Computer Simulation ; Ear, Middle - physiology ; Finite Element Analysis ; Humans ; Loudness Perception - physiology ; Models, Biological ; Noise ; Noise, Transportation ; Psychoacoustics</subject><ispartof>The Journal of the Acoustical Society of America, 2024-08, Vol.156 (2), p.989-1003</ispartof><rights>Acoustical Society of America</rights><rights>2024 Acoustical Society of America.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c212t-a3e7ebd350c07edb4503f3cb410e2d48b7cdc7911a6c9a17c1c2fd83c50418ed3</cites><orcidid>0000-0002-5450-5958 ; 0000-0001-5389-9142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0028130$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1564,4510,27923,27924,76155</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39136635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yu</creatorcontrib><creatorcontrib>Liu, Houguang</creatorcontrib><creatorcontrib>Guo, Weiwei</creatorcontrib><creatorcontrib>He, Zhiheng</creatorcontrib><creatorcontrib>Yang, Jianhua</creatorcontrib><creatorcontrib>Zhang, Zipeng</creatorcontrib><title>Research on sound quality prediction of vehicle interior noise using the human-ear physiological model</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>In order to improve the prediction accuracy of the sound quality of vehicle interior noise, a novel sound quality prediction model was proposed based on the physiological response predicted metrics, i.e., loudness, sharpness, and roughness. First, a human-ear sound transmission model was constructed by combining the outer and middle ear finite element model with the cochlear transmission line model. This model converted external input noise into cochlear basilar membrane response. Second, the physiological perception models of loudness, sharpness, and roughness were constructed by transforming the basilar membrane response into sound perception related to neuronal firing. Finally, taking the calculated loudness, sharpness, and roughness of the physiological model and the subjective evaluation values of vehicle interior noise as the parameters, a sound quality prediction model was constructed by TabNet model. The results demonstrate that the loudness, sharpness, and roughness computed by the human-ear physiological model exhibit a stronger correlation with the subjective evaluation of sound quality annoyance compared to traditional psychoacoustic parameters. Furthermore, the average error percentage of sound quality prediction based on the physiological model is only 3.81%, which is lower than that based on traditional psychoacoustic parameters.</description><subject>Acoustic Stimulation - methods</subject><subject>Auditory Perception - physiology</subject><subject>Automobiles</subject><subject>Basilar Membrane - physiology</subject><subject>Cochlea - physiology</subject><subject>Computer Simulation</subject><subject>Ear, Middle - physiology</subject><subject>Finite Element Analysis</subject><subject>Humans</subject><subject>Loudness Perception - physiology</subject><subject>Models, Biological</subject><subject>Noise</subject><subject>Noise, Transportation</subject><subject>Psychoacoustics</subject><issn>0001-4966</issn><issn>1520-8524</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLxDAURoMozji68QdIlqJUc5M-lzL4ggFBdF3S5HYaSZtO0grz7-0wo0tXH5d7OItDyCWwOwAO99MyxnMQ7IjMIeEsyhMeH5M5YwyiuEjTGTkL4Ws6k1wUp2QmChBpKpI5qd8xoPSqoa6jwY2dpptRWjNsae9RGzWY6eFq-o2NURap6Qb0xnnaOROQjsF0azo0SJuxlV00uWjfbINx1q2Nkpa2TqM9Jye1tAEvDrsgn0-PH8uXaPX2_Lp8WEWKAx8iKTDDSouEKZahruKEiVqoKgaGXMd5lSmtsgJApqqQkClQvNa5UAmLIUctFuR67-2924wYhrI1QaG1skM3hlKwgos0j4FP6M0eVd6F4LEue29a6bclsHLXdbeHrhN8dfCOVYv6D_0NOQG3eyAoM8hdtP90PwwDgWk</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Zhao, Yu</creator><creator>Liu, Houguang</creator><creator>Guo, Weiwei</creator><creator>He, Zhiheng</creator><creator>Yang, Jianhua</creator><creator>Zhang, Zipeng</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5450-5958</orcidid><orcidid>https://orcid.org/0000-0001-5389-9142</orcidid></search><sort><creationdate>202408</creationdate><title>Research on sound quality prediction of vehicle interior noise using the human-ear physiological model</title><author>Zhao, Yu ; Liu, Houguang ; Guo, Weiwei ; He, Zhiheng ; Yang, Jianhua ; Zhang, Zipeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c212t-a3e7ebd350c07edb4503f3cb410e2d48b7cdc7911a6c9a17c1c2fd83c50418ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic Stimulation - methods</topic><topic>Auditory Perception - physiology</topic><topic>Automobiles</topic><topic>Basilar Membrane - physiology</topic><topic>Cochlea - physiology</topic><topic>Computer Simulation</topic><topic>Ear, Middle - physiology</topic><topic>Finite Element Analysis</topic><topic>Humans</topic><topic>Loudness Perception - physiology</topic><topic>Models, Biological</topic><topic>Noise</topic><topic>Noise, Transportation</topic><topic>Psychoacoustics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yu</creatorcontrib><creatorcontrib>Liu, Houguang</creatorcontrib><creatorcontrib>Guo, Weiwei</creatorcontrib><creatorcontrib>He, Zhiheng</creatorcontrib><creatorcontrib>Yang, Jianhua</creatorcontrib><creatorcontrib>Zhang, Zipeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yu</au><au>Liu, Houguang</au><au>Guo, Weiwei</au><au>He, Zhiheng</au><au>Yang, Jianhua</au><au>Zhang, Zipeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on sound quality prediction of vehicle interior noise using the human-ear physiological model</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2024-08</date><risdate>2024</risdate><volume>156</volume><issue>2</issue><spage>989</spage><epage>1003</epage><pages>989-1003</pages><issn>0001-4966</issn><issn>1520-8524</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>In order to improve the prediction accuracy of the sound quality of vehicle interior noise, a novel sound quality prediction model was proposed based on the physiological response predicted metrics, i.e., loudness, sharpness, and roughness. First, a human-ear sound transmission model was constructed by combining the outer and middle ear finite element model with the cochlear transmission line model. This model converted external input noise into cochlear basilar membrane response. Second, the physiological perception models of loudness, sharpness, and roughness were constructed by transforming the basilar membrane response into sound perception related to neuronal firing. Finally, taking the calculated loudness, sharpness, and roughness of the physiological model and the subjective evaluation values of vehicle interior noise as the parameters, a sound quality prediction model was constructed by TabNet model. The results demonstrate that the loudness, sharpness, and roughness computed by the human-ear physiological model exhibit a stronger correlation with the subjective evaluation of sound quality annoyance compared to traditional psychoacoustic parameters. Furthermore, the average error percentage of sound quality prediction based on the physiological model is only 3.81%, which is lower than that based on traditional psychoacoustic parameters.</abstract><cop>United States</cop><pmid>39136635</pmid><doi>10.1121/10.0028130</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5450-5958</orcidid><orcidid>https://orcid.org/0000-0001-5389-9142</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2024-08, Vol.156 (2), p.989-1003
issn 0001-4966
1520-8524
1520-8524
language eng
recordid cdi_proquest_miscellaneous_3092368412
source MEDLINE; AIP Journals Complete; AIP Acoustical Society of America
subjects Acoustic Stimulation - methods
Auditory Perception - physiology
Automobiles
Basilar Membrane - physiology
Cochlea - physiology
Computer Simulation
Ear, Middle - physiology
Finite Element Analysis
Humans
Loudness Perception - physiology
Models, Biological
Noise
Noise, Transportation
Psychoacoustics
title Research on sound quality prediction of vehicle interior noise using the human-ear physiological model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A25%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20sound%20quality%20prediction%20of%20vehicle%20interior%20noise%20using%20the%20human-ear%20physiological%20model&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Zhao,%20Yu&rft.date=2024-08&rft.volume=156&rft.issue=2&rft.spage=989&rft.epage=1003&rft.pages=989-1003&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0028130&rft_dat=%3Cproquest_pubme%3E3092368412%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092368412&rft_id=info:pmid/39136635&rfr_iscdi=true