DeepEMC‐T2 mapping: Deep learning–enabled T2 mapping based on echo modulation curve modeling
PurposeEcho modulation curve (EMC) modeling enables accurate quantification of T2 relaxation times in multi‐echo spin‐echo (MESE) imaging. The standard EMC‐T2 mapping framework, however, requires sufficient echoes and cumbersome pixel‐wise dictionary‐matching steps. This work proposes a deep learnin...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2024-12, Vol.92 (6), p.2707-2722 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2722 |
---|---|
container_issue | 6 |
container_start_page | 2707 |
container_title | Magnetic resonance in medicine |
container_volume | 92 |
creator | Haoyang Pei Shepherd, Timothy M Wang, Yao Liu, Fang Sodickson, Daniel K Noam Ben‐Eliezer Li, Feng |
description | PurposeEcho modulation curve (EMC) modeling enables accurate quantification of T2 relaxation times in multi‐echo spin‐echo (MESE) imaging. The standard EMC‐T2 mapping framework, however, requires sufficient echoes and cumbersome pixel‐wise dictionary‐matching steps. This work proposes a deep learning version of EMC‐T2 mapping, called DeepEMC‐T2 mapping, to efficiently estimate accurate T2 maps from fewer echoes.MethodsDeepEMC‐T2 mapping was developed using a modified U‐Net to estimate both T2 and proton density (PD) maps directly from MESE images. The network implements several new features to improve the accuracy of T2/PD estimation. A total of 67 MESE datasets acquired in axial orientation were used for network training and evaluation. An additional 57 datasets acquired in coronal orientation with different scan parameters were used to evaluate the generalizability of the framework. The performance of DeepEMC‐T2 mapping was evaluated in seven experiments.ResultsCompared to the reference, DeepEMC‐T2 mapping achieved T2 estimation errors from 1% to 11% and PD estimation errors from 0.4% to 1.5% with ten/seven/five/three echoes, which are more accurate than standard EMC‐T2 mapping. By incorporating datasets acquired with different scan parameters and orientations for joint training, DeepEMC‐T2 exhibits robust generalizability across varying imaging protocols. Increasing the echo spacing and including longer echoes improve the accuracy of parameter estimation. The new features proposed in DeepEMC‐T2 mapping all enabled more accurate T2 estimation.ConclusionsDeepEMC‐T2 mapping enables simplified, efficient, and accurate T2 quantification directly from MESE images without dictionary matching. Accurate T2 estimation from fewer echoes allows for increased volumetric coverage and/or higher slice resolution without prolonging total scan times. |
doi_str_mv | 10.1002/mrm.30239 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3092010213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110141346</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-c7bc2e800a79fe7be2525fff223024c285511ee9c3576de1656bc8820f46a3603</originalsourceid><addsrcrecordid>eNpdj8tKA0EQRRtRMEYX_kGDGzcTq6sfM-1OYnxAxE1cx55OjSbMy-lM1vkEwT_Ml9hBQXBV3MPhcouxcwEjAYBXVVeNJKC0B2wgNGKC2qpDNoBUQSKFVcfsJIQVAFibqgF7vSVqJ0_j3fZzhrxybbus3675nvKSXFfHuNt-Ue3ykhb8z-G5CxE0NSf_3vCqWfSlWy9j9n23oT2gMnqn7KhwZaCz3ztkL3eT2fghmT7fP45vpkkrlFknPs09UgbgUltQmhNq1EVRIMZvlMdMayGIrJc6NQsSRpvcZxlCoYyTBuSQXf70tl3z0VNYz6tl8FSWrqamD3MJFkEAChnVi3_qqum7Oq6bSyFAKCGVkd_2O2QQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110141346</pqid></control><display><type>article</type><title>DeepEMC‐T2 mapping: Deep learning–enabled T2 mapping based on echo modulation curve modeling</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Haoyang Pei ; Shepherd, Timothy M ; Wang, Yao ; Liu, Fang ; Sodickson, Daniel K ; Noam Ben‐Eliezer ; Li, Feng</creator><creatorcontrib>Haoyang Pei ; Shepherd, Timothy M ; Wang, Yao ; Liu, Fang ; Sodickson, Daniel K ; Noam Ben‐Eliezer ; Li, Feng</creatorcontrib><description>PurposeEcho modulation curve (EMC) modeling enables accurate quantification of T2 relaxation times in multi‐echo spin‐echo (MESE) imaging. The standard EMC‐T2 mapping framework, however, requires sufficient echoes and cumbersome pixel‐wise dictionary‐matching steps. This work proposes a deep learning version of EMC‐T2 mapping, called DeepEMC‐T2 mapping, to efficiently estimate accurate T2 maps from fewer echoes.MethodsDeepEMC‐T2 mapping was developed using a modified U‐Net to estimate both T2 and proton density (PD) maps directly from MESE images. The network implements several new features to improve the accuracy of T2/PD estimation. A total of 67 MESE datasets acquired in axial orientation were used for network training and evaluation. An additional 57 datasets acquired in coronal orientation with different scan parameters were used to evaluate the generalizability of the framework. The performance of DeepEMC‐T2 mapping was evaluated in seven experiments.ResultsCompared to the reference, DeepEMC‐T2 mapping achieved T2 estimation errors from 1% to 11% and PD estimation errors from 0.4% to 1.5% with ten/seven/five/three echoes, which are more accurate than standard EMC‐T2 mapping. By incorporating datasets acquired with different scan parameters and orientations for joint training, DeepEMC‐T2 exhibits robust generalizability across varying imaging protocols. Increasing the echo spacing and including longer echoes improve the accuracy of parameter estimation. The new features proposed in DeepEMC‐T2 mapping all enabled more accurate T2 estimation.ConclusionsDeepEMC‐T2 mapping enables simplified, efficient, and accurate T2 quantification directly from MESE images without dictionary matching. Accurate T2 estimation from fewer echoes allows for increased volumetric coverage and/or higher slice resolution without prolonging total scan times.</description><identifier>ISSN: 0740-3194</identifier><identifier>ISSN: 1522-2594</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.30239</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Datasets ; Deep learning ; Dictionaries ; Echoes ; Errors ; Image acquisition ; Mapping ; Matching ; Modelling ; Modulation ; Parameter estimation ; Parameter modification ; Parameter robustness ; Performance evaluation ; Proton density (concentration)</subject><ispartof>Magnetic resonance in medicine, 2024-12, Vol.92 (6), p.2707-2722</ispartof><rights>2024 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Haoyang Pei</creatorcontrib><creatorcontrib>Shepherd, Timothy M</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Sodickson, Daniel K</creatorcontrib><creatorcontrib>Noam Ben‐Eliezer</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><title>DeepEMC‐T2 mapping: Deep learning–enabled T2 mapping based on echo modulation curve modeling</title><title>Magnetic resonance in medicine</title><description>PurposeEcho modulation curve (EMC) modeling enables accurate quantification of T2 relaxation times in multi‐echo spin‐echo (MESE) imaging. The standard EMC‐T2 mapping framework, however, requires sufficient echoes and cumbersome pixel‐wise dictionary‐matching steps. This work proposes a deep learning version of EMC‐T2 mapping, called DeepEMC‐T2 mapping, to efficiently estimate accurate T2 maps from fewer echoes.MethodsDeepEMC‐T2 mapping was developed using a modified U‐Net to estimate both T2 and proton density (PD) maps directly from MESE images. The network implements several new features to improve the accuracy of T2/PD estimation. A total of 67 MESE datasets acquired in axial orientation were used for network training and evaluation. An additional 57 datasets acquired in coronal orientation with different scan parameters were used to evaluate the generalizability of the framework. The performance of DeepEMC‐T2 mapping was evaluated in seven experiments.ResultsCompared to the reference, DeepEMC‐T2 mapping achieved T2 estimation errors from 1% to 11% and PD estimation errors from 0.4% to 1.5% with ten/seven/five/three echoes, which are more accurate than standard EMC‐T2 mapping. By incorporating datasets acquired with different scan parameters and orientations for joint training, DeepEMC‐T2 exhibits robust generalizability across varying imaging protocols. Increasing the echo spacing and including longer echoes improve the accuracy of parameter estimation. The new features proposed in DeepEMC‐T2 mapping all enabled more accurate T2 estimation.ConclusionsDeepEMC‐T2 mapping enables simplified, efficient, and accurate T2 quantification directly from MESE images without dictionary matching. Accurate T2 estimation from fewer echoes allows for increased volumetric coverage and/or higher slice resolution without prolonging total scan times.</description><subject>Datasets</subject><subject>Deep learning</subject><subject>Dictionaries</subject><subject>Echoes</subject><subject>Errors</subject><subject>Image acquisition</subject><subject>Mapping</subject><subject>Matching</subject><subject>Modelling</subject><subject>Modulation</subject><subject>Parameter estimation</subject><subject>Parameter modification</subject><subject>Parameter robustness</subject><subject>Performance evaluation</subject><subject>Proton density (concentration)</subject><issn>0740-3194</issn><issn>1522-2594</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdj8tKA0EQRRtRMEYX_kGDGzcTq6sfM-1OYnxAxE1cx55OjSbMy-lM1vkEwT_Ml9hBQXBV3MPhcouxcwEjAYBXVVeNJKC0B2wgNGKC2qpDNoBUQSKFVcfsJIQVAFibqgF7vSVqJ0_j3fZzhrxybbus3675nvKSXFfHuNt-Ue3ykhb8z-G5CxE0NSf_3vCqWfSlWy9j9n23oT2gMnqn7KhwZaCz3ztkL3eT2fghmT7fP45vpkkrlFknPs09UgbgUltQmhNq1EVRIMZvlMdMayGIrJc6NQsSRpvcZxlCoYyTBuSQXf70tl3z0VNYz6tl8FSWrqamD3MJFkEAChnVi3_qqum7Oq6bSyFAKCGVkd_2O2QQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Haoyang Pei</creator><creator>Shepherd, Timothy M</creator><creator>Wang, Yao</creator><creator>Liu, Fang</creator><creator>Sodickson, Daniel K</creator><creator>Noam Ben‐Eliezer</creator><creator>Li, Feng</creator><general>Wiley Subscription Services, Inc</general><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20241201</creationdate><title>DeepEMC‐T2 mapping: Deep learning–enabled T2 mapping based on echo modulation curve modeling</title><author>Haoyang Pei ; Shepherd, Timothy M ; Wang, Yao ; Liu, Fang ; Sodickson, Daniel K ; Noam Ben‐Eliezer ; Li, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-c7bc2e800a79fe7be2525fff223024c285511ee9c3576de1656bc8820f46a3603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Deep learning</topic><topic>Dictionaries</topic><topic>Echoes</topic><topic>Errors</topic><topic>Image acquisition</topic><topic>Mapping</topic><topic>Matching</topic><topic>Modelling</topic><topic>Modulation</topic><topic>Parameter estimation</topic><topic>Parameter modification</topic><topic>Parameter robustness</topic><topic>Performance evaluation</topic><topic>Proton density (concentration)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haoyang Pei</creatorcontrib><creatorcontrib>Shepherd, Timothy M</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Sodickson, Daniel K</creatorcontrib><creatorcontrib>Noam Ben‐Eliezer</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haoyang Pei</au><au>Shepherd, Timothy M</au><au>Wang, Yao</au><au>Liu, Fang</au><au>Sodickson, Daniel K</au><au>Noam Ben‐Eliezer</au><au>Li, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeepEMC‐T2 mapping: Deep learning–enabled T2 mapping based on echo modulation curve modeling</atitle><jtitle>Magnetic resonance in medicine</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>92</volume><issue>6</issue><spage>2707</spage><epage>2722</epage><pages>2707-2722</pages><issn>0740-3194</issn><issn>1522-2594</issn><eissn>1522-2594</eissn><abstract>PurposeEcho modulation curve (EMC) modeling enables accurate quantification of T2 relaxation times in multi‐echo spin‐echo (MESE) imaging. The standard EMC‐T2 mapping framework, however, requires sufficient echoes and cumbersome pixel‐wise dictionary‐matching steps. This work proposes a deep learning version of EMC‐T2 mapping, called DeepEMC‐T2 mapping, to efficiently estimate accurate T2 maps from fewer echoes.MethodsDeepEMC‐T2 mapping was developed using a modified U‐Net to estimate both T2 and proton density (PD) maps directly from MESE images. The network implements several new features to improve the accuracy of T2/PD estimation. A total of 67 MESE datasets acquired in axial orientation were used for network training and evaluation. An additional 57 datasets acquired in coronal orientation with different scan parameters were used to evaluate the generalizability of the framework. The performance of DeepEMC‐T2 mapping was evaluated in seven experiments.ResultsCompared to the reference, DeepEMC‐T2 mapping achieved T2 estimation errors from 1% to 11% and PD estimation errors from 0.4% to 1.5% with ten/seven/five/three echoes, which are more accurate than standard EMC‐T2 mapping. By incorporating datasets acquired with different scan parameters and orientations for joint training, DeepEMC‐T2 exhibits robust generalizability across varying imaging protocols. Increasing the echo spacing and including longer echoes improve the accuracy of parameter estimation. The new features proposed in DeepEMC‐T2 mapping all enabled more accurate T2 estimation.ConclusionsDeepEMC‐T2 mapping enables simplified, efficient, and accurate T2 quantification directly from MESE images without dictionary matching. Accurate T2 estimation from fewer echoes allows for increased volumetric coverage and/or higher slice resolution without prolonging total scan times.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mrm.30239</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2024-12, Vol.92 (6), p.2707-2722 |
issn | 0740-3194 1522-2594 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_3092010213 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Datasets Deep learning Dictionaries Echoes Errors Image acquisition Mapping Matching Modelling Modulation Parameter estimation Parameter modification Parameter robustness Performance evaluation Proton density (concentration) |
title | DeepEMC‐T2 mapping: Deep learning–enabled T2 mapping based on echo modulation curve modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A24%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeepEMC%E2%80%90T2%20mapping:%20Deep%20learning%E2%80%93enabled%20T2%20mapping%20based%20on%20echo%20modulation%20curve%20modeling&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Haoyang%20Pei&rft.date=2024-12-01&rft.volume=92&rft.issue=6&rft.spage=2707&rft.epage=2722&rft.pages=2707-2722&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.30239&rft_dat=%3Cproquest%3E3110141346%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110141346&rft_id=info:pmid/&rfr_iscdi=true |