Simulation-Guided Analysis towards Trench Depth Optimization for Enhanced Flexibility in Stretch-Free, Shape-Induced Interconnects for Flexible Electronics
In this paper, we present an optimization of the planar manufacturing scheme for stretch-free, shape-induced metal interconnects to simplify fabrication with the aim of maximizing the flexibility in a structure regarding stress and strain. The formation of trenches between silicon islands is activel...
Gespeichert in:
Veröffentlicht in: | Materials 2024-08, Vol.17 (15), p.3849 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | 3849 |
container_title | Materials |
container_volume | 17 |
creator | Joch, Daniel Lang, Thomas Sanctis, Shawn Jank, Michael P M |
description | In this paper, we present an optimization of the planar manufacturing scheme for stretch-free, shape-induced metal interconnects to simplify fabrication with the aim of maximizing the flexibility in a structure regarding stress and strain. The formation of trenches between silicon islands is actively used in the lithographic process to create arc shape structures by spin coating resists into the trenches. The resulting resist form is used as a template for the metal lines, which are structured on top. Because this arc shape is beneficial for the flexibility of these bridges. The trench depth as a key parameter for the stress distribution is investigated by applying numerical simulations. The simulated results show that the increase in penetration depth of the metal bridge into the trench increases the tensile load which is converted into a shear force Q(x), that usually leads to increased strains the structure can generate. For the fabrication, the filling of the trenches with resists is optimized by varying the spin speed. Compared to theoretical resistance, the current-voltage measurements of the metal bridges show a similar behavior and almost every structural variation is capable of functioning as a flexible electrical interconnect in a complete island-bridge array. |
doi_str_mv | 10.3390/ma17153849 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3091285755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804514623</galeid><sourcerecordid>A804514623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-56b70d0a68af842ae395387ee52598d613fa655bf1ceef681caad722fa31c8593</originalsourceid><addsrcrecordid>eNpdkc1u3CAUhVHVqInSbPoAFVI3VVUnxhgblqN0Jh0pUhaTrC0GX2oiDC5gpdNXycuGzKQ_CncBuvrOFfcchD6Q8pxSUV6MkrSEUV6LN-iECNEURNT12__ex-gsxvsyH0oJr8Q7dEwFqWpG2Al63JhxtjIZ74qr2fTQ44WTdhdNxMk_yNBHfBvAqQF_gykN-GZKZjS_9wqsfcBLN0insm5l4ZfZGmvSDhuHNylAUkOxCgBf8WaQExRr18_P6NolCMo7ByrF_ZSD2AJe2twL3hkV36MjLW2Es5f7FN2tlreX34vrm6v15eK6UFUrUsGabVv2pWy41LyuJFCR_WgBWMUE7xtCtWwY22qiAHTDiZKyb6tKS0oUZ4Keos-HuVPwP2eIqRtNVGCtdODn2NEy28VZy1hGP71C7_0csmF7qhSMiLbJ1PmB-iEtdMZpn4JUuXoYTV4btMn9BS9zBnVT0Sz4chCo4GMMoLspmFGGXUfK7jnm7l_MGf748od5O0L_F_0TKn0Czv2j4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090951976</pqid></control><display><type>article</type><title>Simulation-Guided Analysis towards Trench Depth Optimization for Enhanced Flexibility in Stretch-Free, Shape-Induced Interconnects for Flexible Electronics</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Joch, Daniel ; Lang, Thomas ; Sanctis, Shawn ; Jank, Michael P M</creator><creatorcontrib>Joch, Daniel ; Lang, Thomas ; Sanctis, Shawn ; Jank, Michael P M</creatorcontrib><description>In this paper, we present an optimization of the planar manufacturing scheme for stretch-free, shape-induced metal interconnects to simplify fabrication with the aim of maximizing the flexibility in a structure regarding stress and strain. The formation of trenches between silicon islands is actively used in the lithographic process to create arc shape structures by spin coating resists into the trenches. The resulting resist form is used as a template for the metal lines, which are structured on top. Because this arc shape is beneficial for the flexibility of these bridges. The trench depth as a key parameter for the stress distribution is investigated by applying numerical simulations. The simulated results show that the increase in penetration depth of the metal bridge into the trench increases the tensile load which is converted into a shear force Q(x), that usually leads to increased strains the structure can generate. For the fabrication, the filling of the trenches with resists is optimized by varying the spin speed. Compared to theoretical resistance, the current-voltage measurements of the metal bridges show a similar behavior and almost every structural variation is capable of functioning as a flexible electrical interconnect in a complete island-bridge array.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17153849</identifier><identifier>PMID: 39124515</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Advanced manufacturing technologies ; Analysis ; Bridges ; Design ; Electrical measurement ; Electron spin ; Etching ; Flexibility ; Flexible components ; Force distribution ; Interconnections ; Investigations ; Islands ; Manufacturing ; Numerical analysis ; Optimization ; Penetration depth ; Penetration resistance ; Resists ; Shear forces ; Silicon wafers ; Simulation ; Spin coating ; Stress distribution ; Tensile stress ; Trenches ; Yield stress</subject><ispartof>Materials, 2024-08, Vol.17 (15), p.3849</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-56b70d0a68af842ae395387ee52598d613fa655bf1ceef681caad722fa31c8593</cites><orcidid>0000-0002-6523-2684 ; 0000-0001-7304-0503 ; 0000-0001-8594-9749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39124515$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joch, Daniel</creatorcontrib><creatorcontrib>Lang, Thomas</creatorcontrib><creatorcontrib>Sanctis, Shawn</creatorcontrib><creatorcontrib>Jank, Michael P M</creatorcontrib><title>Simulation-Guided Analysis towards Trench Depth Optimization for Enhanced Flexibility in Stretch-Free, Shape-Induced Interconnects for Flexible Electronics</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>In this paper, we present an optimization of the planar manufacturing scheme for stretch-free, shape-induced metal interconnects to simplify fabrication with the aim of maximizing the flexibility in a structure regarding stress and strain. The formation of trenches between silicon islands is actively used in the lithographic process to create arc shape structures by spin coating resists into the trenches. The resulting resist form is used as a template for the metal lines, which are structured on top. Because this arc shape is beneficial for the flexibility of these bridges. The trench depth as a key parameter for the stress distribution is investigated by applying numerical simulations. The simulated results show that the increase in penetration depth of the metal bridge into the trench increases the tensile load which is converted into a shear force Q(x), that usually leads to increased strains the structure can generate. For the fabrication, the filling of the trenches with resists is optimized by varying the spin speed. Compared to theoretical resistance, the current-voltage measurements of the metal bridges show a similar behavior and almost every structural variation is capable of functioning as a flexible electrical interconnect in a complete island-bridge array.</description><subject>Advanced manufacturing technologies</subject><subject>Analysis</subject><subject>Bridges</subject><subject>Design</subject><subject>Electrical measurement</subject><subject>Electron spin</subject><subject>Etching</subject><subject>Flexibility</subject><subject>Flexible components</subject><subject>Force distribution</subject><subject>Interconnections</subject><subject>Investigations</subject><subject>Islands</subject><subject>Manufacturing</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Penetration depth</subject><subject>Penetration resistance</subject><subject>Resists</subject><subject>Shear forces</subject><subject>Silicon wafers</subject><subject>Simulation</subject><subject>Spin coating</subject><subject>Stress distribution</subject><subject>Tensile stress</subject><subject>Trenches</subject><subject>Yield stress</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc1u3CAUhVHVqInSbPoAFVI3VVUnxhgblqN0Jh0pUhaTrC0GX2oiDC5gpdNXycuGzKQ_CncBuvrOFfcchD6Q8pxSUV6MkrSEUV6LN-iECNEURNT12__ex-gsxvsyH0oJr8Q7dEwFqWpG2Al63JhxtjIZ74qr2fTQ44WTdhdNxMk_yNBHfBvAqQF_gykN-GZKZjS_9wqsfcBLN0insm5l4ZfZGmvSDhuHNylAUkOxCgBf8WaQExRr18_P6NolCMo7ByrF_ZSD2AJe2twL3hkV36MjLW2Es5f7FN2tlreX34vrm6v15eK6UFUrUsGabVv2pWy41LyuJFCR_WgBWMUE7xtCtWwY22qiAHTDiZKyb6tKS0oUZ4Keos-HuVPwP2eIqRtNVGCtdODn2NEy28VZy1hGP71C7_0csmF7qhSMiLbJ1PmB-iEtdMZpn4JUuXoYTV4btMn9BS9zBnVT0Sz4chCo4GMMoLspmFGGXUfK7jnm7l_MGf748od5O0L_F_0TKn0Czv2j4A</recordid><startdate>20240803</startdate><enddate>20240803</enddate><creator>Joch, Daniel</creator><creator>Lang, Thomas</creator><creator>Sanctis, Shawn</creator><creator>Jank, Michael P M</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6523-2684</orcidid><orcidid>https://orcid.org/0000-0001-7304-0503</orcidid><orcidid>https://orcid.org/0000-0001-8594-9749</orcidid></search><sort><creationdate>20240803</creationdate><title>Simulation-Guided Analysis towards Trench Depth Optimization for Enhanced Flexibility in Stretch-Free, Shape-Induced Interconnects for Flexible Electronics</title><author>Joch, Daniel ; Lang, Thomas ; Sanctis, Shawn ; Jank, Michael P M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-56b70d0a68af842ae395387ee52598d613fa655bf1ceef681caad722fa31c8593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advanced manufacturing technologies</topic><topic>Analysis</topic><topic>Bridges</topic><topic>Design</topic><topic>Electrical measurement</topic><topic>Electron spin</topic><topic>Etching</topic><topic>Flexibility</topic><topic>Flexible components</topic><topic>Force distribution</topic><topic>Interconnections</topic><topic>Investigations</topic><topic>Islands</topic><topic>Manufacturing</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Penetration depth</topic><topic>Penetration resistance</topic><topic>Resists</topic><topic>Shear forces</topic><topic>Silicon wafers</topic><topic>Simulation</topic><topic>Spin coating</topic><topic>Stress distribution</topic><topic>Tensile stress</topic><topic>Trenches</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joch, Daniel</creatorcontrib><creatorcontrib>Lang, Thomas</creatorcontrib><creatorcontrib>Sanctis, Shawn</creatorcontrib><creatorcontrib>Jank, Michael P M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joch, Daniel</au><au>Lang, Thomas</au><au>Sanctis, Shawn</au><au>Jank, Michael P M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation-Guided Analysis towards Trench Depth Optimization for Enhanced Flexibility in Stretch-Free, Shape-Induced Interconnects for Flexible Electronics</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-08-03</date><risdate>2024</risdate><volume>17</volume><issue>15</issue><spage>3849</spage><pages>3849-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In this paper, we present an optimization of the planar manufacturing scheme for stretch-free, shape-induced metal interconnects to simplify fabrication with the aim of maximizing the flexibility in a structure regarding stress and strain. The formation of trenches between silicon islands is actively used in the lithographic process to create arc shape structures by spin coating resists into the trenches. The resulting resist form is used as a template for the metal lines, which are structured on top. Because this arc shape is beneficial for the flexibility of these bridges. The trench depth as a key parameter for the stress distribution is investigated by applying numerical simulations. The simulated results show that the increase in penetration depth of the metal bridge into the trench increases the tensile load which is converted into a shear force Q(x), that usually leads to increased strains the structure can generate. For the fabrication, the filling of the trenches with resists is optimized by varying the spin speed. Compared to theoretical resistance, the current-voltage measurements of the metal bridges show a similar behavior and almost every structural variation is capable of functioning as a flexible electrical interconnect in a complete island-bridge array.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39124515</pmid><doi>10.3390/ma17153849</doi><orcidid>https://orcid.org/0000-0002-6523-2684</orcidid><orcidid>https://orcid.org/0000-0001-7304-0503</orcidid><orcidid>https://orcid.org/0000-0001-8594-9749</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-08, Vol.17 (15), p.3849 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_miscellaneous_3091285755 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Advanced manufacturing technologies Analysis Bridges Design Electrical measurement Electron spin Etching Flexibility Flexible components Force distribution Interconnections Investigations Islands Manufacturing Numerical analysis Optimization Penetration depth Penetration resistance Resists Shear forces Silicon wafers Simulation Spin coating Stress distribution Tensile stress Trenches Yield stress |
title | Simulation-Guided Analysis towards Trench Depth Optimization for Enhanced Flexibility in Stretch-Free, Shape-Induced Interconnects for Flexible Electronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation-Guided%20Analysis%20towards%20Trench%20Depth%20Optimization%20for%20Enhanced%20Flexibility%20in%20Stretch-Free,%20Shape-Induced%20Interconnects%20for%20Flexible%20Electronics&rft.jtitle=Materials&rft.au=Joch,%20Daniel&rft.date=2024-08-03&rft.volume=17&rft.issue=15&rft.spage=3849&rft.pages=3849-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17153849&rft_dat=%3Cgale_proqu%3EA804514623%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090951976&rft_id=info:pmid/39124515&rft_galeid=A804514623&rfr_iscdi=true |