Simulation-Guided Analysis towards Trench Depth Optimization for Enhanced Flexibility in Stretch-Free, Shape-Induced Interconnects for Flexible Electronics

In this paper, we present an optimization of the planar manufacturing scheme for stretch-free, shape-induced metal interconnects to simplify fabrication with the aim of maximizing the flexibility in a structure regarding stress and strain. The formation of trenches between silicon islands is activel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-08, Vol.17 (15), p.3849
Hauptverfasser: Joch, Daniel, Lang, Thomas, Sanctis, Shawn, Jank, Michael P M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page 3849
container_title Materials
container_volume 17
creator Joch, Daniel
Lang, Thomas
Sanctis, Shawn
Jank, Michael P M
description In this paper, we present an optimization of the planar manufacturing scheme for stretch-free, shape-induced metal interconnects to simplify fabrication with the aim of maximizing the flexibility in a structure regarding stress and strain. The formation of trenches between silicon islands is actively used in the lithographic process to create arc shape structures by spin coating resists into the trenches. The resulting resist form is used as a template for the metal lines, which are structured on top. Because this arc shape is beneficial for the flexibility of these bridges. The trench depth as a key parameter for the stress distribution is investigated by applying numerical simulations. The simulated results show that the increase in penetration depth of the metal bridge into the trench increases the tensile load which is converted into a shear force Q(x), that usually leads to increased strains the structure can generate. For the fabrication, the filling of the trenches with resists is optimized by varying the spin speed. Compared to theoretical resistance, the current-voltage measurements of the metal bridges show a similar behavior and almost every structural variation is capable of functioning as a flexible electrical interconnect in a complete island-bridge array.
doi_str_mv 10.3390/ma17153849
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3091285755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804514623</galeid><sourcerecordid>A804514623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-56b70d0a68af842ae395387ee52598d613fa655bf1ceef681caad722fa31c8593</originalsourceid><addsrcrecordid>eNpdkc1u3CAUhVHVqInSbPoAFVI3VVUnxhgblqN0Jh0pUhaTrC0GX2oiDC5gpdNXycuGzKQ_CncBuvrOFfcchD6Q8pxSUV6MkrSEUV6LN-iECNEURNT12__ex-gsxvsyH0oJr8Q7dEwFqWpG2Al63JhxtjIZ74qr2fTQ44WTdhdNxMk_yNBHfBvAqQF_gykN-GZKZjS_9wqsfcBLN0insm5l4ZfZGmvSDhuHNylAUkOxCgBf8WaQExRr18_P6NolCMo7ByrF_ZSD2AJe2twL3hkV36MjLW2Es5f7FN2tlreX34vrm6v15eK6UFUrUsGabVv2pWy41LyuJFCR_WgBWMUE7xtCtWwY22qiAHTDiZKyb6tKS0oUZ4Keos-HuVPwP2eIqRtNVGCtdODn2NEy28VZy1hGP71C7_0csmF7qhSMiLbJ1PmB-iEtdMZpn4JUuXoYTV4btMn9BS9zBnVT0Sz4chCo4GMMoLspmFGGXUfK7jnm7l_MGf748od5O0L_F_0TKn0Czv2j4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090951976</pqid></control><display><type>article</type><title>Simulation-Guided Analysis towards Trench Depth Optimization for Enhanced Flexibility in Stretch-Free, Shape-Induced Interconnects for Flexible Electronics</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Joch, Daniel ; Lang, Thomas ; Sanctis, Shawn ; Jank, Michael P M</creator><creatorcontrib>Joch, Daniel ; Lang, Thomas ; Sanctis, Shawn ; Jank, Michael P M</creatorcontrib><description>In this paper, we present an optimization of the planar manufacturing scheme for stretch-free, shape-induced metal interconnects to simplify fabrication with the aim of maximizing the flexibility in a structure regarding stress and strain. The formation of trenches between silicon islands is actively used in the lithographic process to create arc shape structures by spin coating resists into the trenches. The resulting resist form is used as a template for the metal lines, which are structured on top. Because this arc shape is beneficial for the flexibility of these bridges. The trench depth as a key parameter for the stress distribution is investigated by applying numerical simulations. The simulated results show that the increase in penetration depth of the metal bridge into the trench increases the tensile load which is converted into a shear force Q(x), that usually leads to increased strains the structure can generate. For the fabrication, the filling of the trenches with resists is optimized by varying the spin speed. Compared to theoretical resistance, the current-voltage measurements of the metal bridges show a similar behavior and almost every structural variation is capable of functioning as a flexible electrical interconnect in a complete island-bridge array.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17153849</identifier><identifier>PMID: 39124515</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Advanced manufacturing technologies ; Analysis ; Bridges ; Design ; Electrical measurement ; Electron spin ; Etching ; Flexibility ; Flexible components ; Force distribution ; Interconnections ; Investigations ; Islands ; Manufacturing ; Numerical analysis ; Optimization ; Penetration depth ; Penetration resistance ; Resists ; Shear forces ; Silicon wafers ; Simulation ; Spin coating ; Stress distribution ; Tensile stress ; Trenches ; Yield stress</subject><ispartof>Materials, 2024-08, Vol.17 (15), p.3849</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-56b70d0a68af842ae395387ee52598d613fa655bf1ceef681caad722fa31c8593</cites><orcidid>0000-0002-6523-2684 ; 0000-0001-7304-0503 ; 0000-0001-8594-9749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39124515$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joch, Daniel</creatorcontrib><creatorcontrib>Lang, Thomas</creatorcontrib><creatorcontrib>Sanctis, Shawn</creatorcontrib><creatorcontrib>Jank, Michael P M</creatorcontrib><title>Simulation-Guided Analysis towards Trench Depth Optimization for Enhanced Flexibility in Stretch-Free, Shape-Induced Interconnects for Flexible Electronics</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>In this paper, we present an optimization of the planar manufacturing scheme for stretch-free, shape-induced metal interconnects to simplify fabrication with the aim of maximizing the flexibility in a structure regarding stress and strain. The formation of trenches between silicon islands is actively used in the lithographic process to create arc shape structures by spin coating resists into the trenches. The resulting resist form is used as a template for the metal lines, which are structured on top. Because this arc shape is beneficial for the flexibility of these bridges. The trench depth as a key parameter for the stress distribution is investigated by applying numerical simulations. The simulated results show that the increase in penetration depth of the metal bridge into the trench increases the tensile load which is converted into a shear force Q(x), that usually leads to increased strains the structure can generate. For the fabrication, the filling of the trenches with resists is optimized by varying the spin speed. Compared to theoretical resistance, the current-voltage measurements of the metal bridges show a similar behavior and almost every structural variation is capable of functioning as a flexible electrical interconnect in a complete island-bridge array.</description><subject>Advanced manufacturing technologies</subject><subject>Analysis</subject><subject>Bridges</subject><subject>Design</subject><subject>Electrical measurement</subject><subject>Electron spin</subject><subject>Etching</subject><subject>Flexibility</subject><subject>Flexible components</subject><subject>Force distribution</subject><subject>Interconnections</subject><subject>Investigations</subject><subject>Islands</subject><subject>Manufacturing</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Penetration depth</subject><subject>Penetration resistance</subject><subject>Resists</subject><subject>Shear forces</subject><subject>Silicon wafers</subject><subject>Simulation</subject><subject>Spin coating</subject><subject>Stress distribution</subject><subject>Tensile stress</subject><subject>Trenches</subject><subject>Yield stress</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc1u3CAUhVHVqInSbPoAFVI3VVUnxhgblqN0Jh0pUhaTrC0GX2oiDC5gpdNXycuGzKQ_CncBuvrOFfcchD6Q8pxSUV6MkrSEUV6LN-iECNEURNT12__ex-gsxvsyH0oJr8Q7dEwFqWpG2Al63JhxtjIZ74qr2fTQ44WTdhdNxMk_yNBHfBvAqQF_gykN-GZKZjS_9wqsfcBLN0insm5l4ZfZGmvSDhuHNylAUkOxCgBf8WaQExRr18_P6NolCMo7ByrF_ZSD2AJe2twL3hkV36MjLW2Es5f7FN2tlreX34vrm6v15eK6UFUrUsGabVv2pWy41LyuJFCR_WgBWMUE7xtCtWwY22qiAHTDiZKyb6tKS0oUZ4Keos-HuVPwP2eIqRtNVGCtdODn2NEy28VZy1hGP71C7_0csmF7qhSMiLbJ1PmB-iEtdMZpn4JUuXoYTV4btMn9BS9zBnVT0Sz4chCo4GMMoLspmFGGXUfK7jnm7l_MGf748od5O0L_F_0TKn0Czv2j4A</recordid><startdate>20240803</startdate><enddate>20240803</enddate><creator>Joch, Daniel</creator><creator>Lang, Thomas</creator><creator>Sanctis, Shawn</creator><creator>Jank, Michael P M</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6523-2684</orcidid><orcidid>https://orcid.org/0000-0001-7304-0503</orcidid><orcidid>https://orcid.org/0000-0001-8594-9749</orcidid></search><sort><creationdate>20240803</creationdate><title>Simulation-Guided Analysis towards Trench Depth Optimization for Enhanced Flexibility in Stretch-Free, Shape-Induced Interconnects for Flexible Electronics</title><author>Joch, Daniel ; Lang, Thomas ; Sanctis, Shawn ; Jank, Michael P M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-56b70d0a68af842ae395387ee52598d613fa655bf1ceef681caad722fa31c8593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advanced manufacturing technologies</topic><topic>Analysis</topic><topic>Bridges</topic><topic>Design</topic><topic>Electrical measurement</topic><topic>Electron spin</topic><topic>Etching</topic><topic>Flexibility</topic><topic>Flexible components</topic><topic>Force distribution</topic><topic>Interconnections</topic><topic>Investigations</topic><topic>Islands</topic><topic>Manufacturing</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Penetration depth</topic><topic>Penetration resistance</topic><topic>Resists</topic><topic>Shear forces</topic><topic>Silicon wafers</topic><topic>Simulation</topic><topic>Spin coating</topic><topic>Stress distribution</topic><topic>Tensile stress</topic><topic>Trenches</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joch, Daniel</creatorcontrib><creatorcontrib>Lang, Thomas</creatorcontrib><creatorcontrib>Sanctis, Shawn</creatorcontrib><creatorcontrib>Jank, Michael P M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joch, Daniel</au><au>Lang, Thomas</au><au>Sanctis, Shawn</au><au>Jank, Michael P M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation-Guided Analysis towards Trench Depth Optimization for Enhanced Flexibility in Stretch-Free, Shape-Induced Interconnects for Flexible Electronics</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-08-03</date><risdate>2024</risdate><volume>17</volume><issue>15</issue><spage>3849</spage><pages>3849-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In this paper, we present an optimization of the planar manufacturing scheme for stretch-free, shape-induced metal interconnects to simplify fabrication with the aim of maximizing the flexibility in a structure regarding stress and strain. The formation of trenches between silicon islands is actively used in the lithographic process to create arc shape structures by spin coating resists into the trenches. The resulting resist form is used as a template for the metal lines, which are structured on top. Because this arc shape is beneficial for the flexibility of these bridges. The trench depth as a key parameter for the stress distribution is investigated by applying numerical simulations. The simulated results show that the increase in penetration depth of the metal bridge into the trench increases the tensile load which is converted into a shear force Q(x), that usually leads to increased strains the structure can generate. For the fabrication, the filling of the trenches with resists is optimized by varying the spin speed. Compared to theoretical resistance, the current-voltage measurements of the metal bridges show a similar behavior and almost every structural variation is capable of functioning as a flexible electrical interconnect in a complete island-bridge array.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39124515</pmid><doi>10.3390/ma17153849</doi><orcidid>https://orcid.org/0000-0002-6523-2684</orcidid><orcidid>https://orcid.org/0000-0001-7304-0503</orcidid><orcidid>https://orcid.org/0000-0001-8594-9749</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-08, Vol.17 (15), p.3849
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_3091285755
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Advanced manufacturing technologies
Analysis
Bridges
Design
Electrical measurement
Electron spin
Etching
Flexibility
Flexible components
Force distribution
Interconnections
Investigations
Islands
Manufacturing
Numerical analysis
Optimization
Penetration depth
Penetration resistance
Resists
Shear forces
Silicon wafers
Simulation
Spin coating
Stress distribution
Tensile stress
Trenches
Yield stress
title Simulation-Guided Analysis towards Trench Depth Optimization for Enhanced Flexibility in Stretch-Free, Shape-Induced Interconnects for Flexible Electronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation-Guided%20Analysis%20towards%20Trench%20Depth%20Optimization%20for%20Enhanced%20Flexibility%20in%20Stretch-Free,%20Shape-Induced%20Interconnects%20for%20Flexible%20Electronics&rft.jtitle=Materials&rft.au=Joch,%20Daniel&rft.date=2024-08-03&rft.volume=17&rft.issue=15&rft.spage=3849&rft.pages=3849-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17153849&rft_dat=%3Cgale_proqu%3EA804514623%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090951976&rft_id=info:pmid/39124515&rft_galeid=A804514623&rfr_iscdi=true