Study of Prefabricated Crack Propagation on Monocrystalline Silicon Surfaces for Grinding Damage Analysis
Crack generation and propagation are critical aspects of grinding processes for hard and brittle materials. Despite extensive research, the impact of residual cracks from coarse grinding on the cracks generated during fine grinding remains unexplored. This study aims to bridge this gap by examining...
Gespeichert in:
Veröffentlicht in: | Materials 2024-08, Vol.17 (15), p.3852 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | 3852 |
container_title | Materials |
container_volume | 17 |
creator | Zhao, Bingyao Huang, Ning Dai, Siyang Zhou, Ping |
description | Crack generation and propagation are critical aspects of grinding processes for hard and brittle materials. Despite extensive research, the impact of residual cracks from coarse grinding on the cracks generated during fine grinding remains unexplored. This study aims to bridge this gap by examining the propagation law of existing cracks under indentation using the extended finite element method. The results reveal that prefabricated cracks with depths less than the crack depth produced on an undamaged surface tend to extend further without surpassing the latter. Conversely, deeper prefabricated cracks do not exhibit significant expansion. A novel method combining indentation and prefabricated cracks with fracture strength tests is proposed to determine crack propagation. Silicon wafers with varying damaged surfaces are analyzed, and changes in fracture strength, measured by the ball-on-ring method, are utilized to determine crack propagation. The experimental results confirm the proposed crack evolution law, validated by damage assessments across different grinding processes, which is suitable for crack damage. The findings demonstrate that residual cracks from coarse grinding are negligible in predicting the maximum crack depth during fine grinding. This research provides a crucial foundation for optimizing the wafer thinning process in 3D stacked chip manufacturing, establishing that changes in fracture strength are a reliable indicator of crack propagation feasibility. |
doi_str_mv | 10.3390/ma17153852 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3091285503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804514624</galeid><sourcerecordid>A804514624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-30175c51414e27bbb1f36b226b86e87d0b1f2b4893214f08e2daa6d4099ae0f13</originalsourceid><addsrcrecordid>eNpdkV9r2zAUxcVoWUual32AIdhLGaTVX9t6DGnXFVpayPZsruWroMy2Msl-yLevsnTrqCSQOPyuuPccQj5xdiWlYdc98JJrWWnxgZxzY4oFN0qd_Pc-I_OUtiwvKXklzEdyJg0XSvPinPj1OLV7Ghx9juigid7CiC1dRbC_shZ2sIHRh4Hm8xiGYOM-jdB1fkC69p23WV9P0YHFRF2I9C76ofXDht5ADxukywG6ffLpgpw66BLOX-8Z-fnt9sfq--Lh6e5-tXxYWFGacSEZL7XVXHGFomyahjtZNEIUTVVgVbYsC6JRlZGCK8cqFC1A0SpmDCBzXM7I5fHfXQy_J0xj3ftksetgwDClWrI8fKV1dmNGvrxDt2GKud8_FDNa6eJAXR2pDXRY-8GFMZuTd4v9YXx0PuvLimVHVSFULvh6LLAxpJRtrXfR9xD3NWf1IbT6LbQMf37tYWp6bP-hfyOSL-JrkEk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090954563</pqid></control><display><type>article</type><title>Study of Prefabricated Crack Propagation on Monocrystalline Silicon Surfaces for Grinding Damage Analysis</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Zhao, Bingyao ; Huang, Ning ; Dai, Siyang ; Zhou, Ping</creator><creatorcontrib>Zhao, Bingyao ; Huang, Ning ; Dai, Siyang ; Zhou, Ping</creatorcontrib><description>Crack generation and propagation are critical aspects of grinding processes for hard and brittle materials. Despite extensive research, the impact of residual cracks from coarse grinding on the cracks generated during fine grinding remains unexplored. This study aims to bridge this gap by examining the propagation law of existing cracks under indentation using the extended finite element method. The results reveal that prefabricated cracks with depths less than the crack depth produced on an undamaged surface tend to extend further without surpassing the latter. Conversely, deeper prefabricated cracks do not exhibit significant expansion. A novel method combining indentation and prefabricated cracks with fracture strength tests is proposed to determine crack propagation. Silicon wafers with varying damaged surfaces are analyzed, and changes in fracture strength, measured by the ball-on-ring method, are utilized to determine crack propagation. The experimental results confirm the proposed crack evolution law, validated by damage assessments across different grinding processes, which is suitable for crack damage. The findings demonstrate that residual cracks from coarse grinding are negligible in predicting the maximum crack depth during fine grinding. This research provides a crucial foundation for optimizing the wafer thinning process in 3D stacked chip manufacturing, establishing that changes in fracture strength are a reliable indicator of crack propagation feasibility.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17153852</identifier><identifier>PMID: 39124516</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Brittle materials ; Crack initiation ; Crack propagation ; Cracking (fracturing) ; Damage assessment ; Efficiency ; Fine grinding ; Finite element analysis ; Finite element method ; Fracture mechanics ; Fracture strength ; Grinding ; Impact analysis ; Indentation ; Integrated circuit fabrication ; Laws, regulations and rules ; Prefabrication ; Propagation ; Silicon ; Silicon wafers ; Simulation</subject><ispartof>Materials, 2024-08, Vol.17 (15), p.3852</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-30175c51414e27bbb1f36b226b86e87d0b1f2b4893214f08e2daa6d4099ae0f13</cites><orcidid>0000-0002-4560-6888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39124516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Bingyao</creatorcontrib><creatorcontrib>Huang, Ning</creatorcontrib><creatorcontrib>Dai, Siyang</creatorcontrib><creatorcontrib>Zhou, Ping</creatorcontrib><title>Study of Prefabricated Crack Propagation on Monocrystalline Silicon Surfaces for Grinding Damage Analysis</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Crack generation and propagation are critical aspects of grinding processes for hard and brittle materials. Despite extensive research, the impact of residual cracks from coarse grinding on the cracks generated during fine grinding remains unexplored. This study aims to bridge this gap by examining the propagation law of existing cracks under indentation using the extended finite element method. The results reveal that prefabricated cracks with depths less than the crack depth produced on an undamaged surface tend to extend further without surpassing the latter. Conversely, deeper prefabricated cracks do not exhibit significant expansion. A novel method combining indentation and prefabricated cracks with fracture strength tests is proposed to determine crack propagation. Silicon wafers with varying damaged surfaces are analyzed, and changes in fracture strength, measured by the ball-on-ring method, are utilized to determine crack propagation. The experimental results confirm the proposed crack evolution law, validated by damage assessments across different grinding processes, which is suitable for crack damage. The findings demonstrate that residual cracks from coarse grinding are negligible in predicting the maximum crack depth during fine grinding. This research provides a crucial foundation for optimizing the wafer thinning process in 3D stacked chip manufacturing, establishing that changes in fracture strength are a reliable indicator of crack propagation feasibility.</description><subject>Brittle materials</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Cracking (fracturing)</subject><subject>Damage assessment</subject><subject>Efficiency</subject><subject>Fine grinding</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Fracture strength</subject><subject>Grinding</subject><subject>Impact analysis</subject><subject>Indentation</subject><subject>Integrated circuit fabrication</subject><subject>Laws, regulations and rules</subject><subject>Prefabrication</subject><subject>Propagation</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Simulation</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV9r2zAUxcVoWUual32AIdhLGaTVX9t6DGnXFVpayPZsruWroMy2Msl-yLevsnTrqCSQOPyuuPccQj5xdiWlYdc98JJrWWnxgZxzY4oFN0qd_Pc-I_OUtiwvKXklzEdyJg0XSvPinPj1OLV7Ghx9juigid7CiC1dRbC_shZ2sIHRh4Hm8xiGYOM-jdB1fkC69p23WV9P0YHFRF2I9C76ofXDht5ADxukywG6ffLpgpw66BLOX-8Z-fnt9sfq--Lh6e5-tXxYWFGacSEZL7XVXHGFomyahjtZNEIUTVVgVbYsC6JRlZGCK8cqFC1A0SpmDCBzXM7I5fHfXQy_J0xj3ftksetgwDClWrI8fKV1dmNGvrxDt2GKud8_FDNa6eJAXR2pDXRY-8GFMZuTd4v9YXx0PuvLimVHVSFULvh6LLAxpJRtrXfR9xD3NWf1IbT6LbQMf37tYWp6bP-hfyOSL-JrkEk</recordid><startdate>20240803</startdate><enddate>20240803</enddate><creator>Zhao, Bingyao</creator><creator>Huang, Ning</creator><creator>Dai, Siyang</creator><creator>Zhou, Ping</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4560-6888</orcidid></search><sort><creationdate>20240803</creationdate><title>Study of Prefabricated Crack Propagation on Monocrystalline Silicon Surfaces for Grinding Damage Analysis</title><author>Zhao, Bingyao ; Huang, Ning ; Dai, Siyang ; Zhou, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-30175c51414e27bbb1f36b226b86e87d0b1f2b4893214f08e2daa6d4099ae0f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brittle materials</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Cracking (fracturing)</topic><topic>Damage assessment</topic><topic>Efficiency</topic><topic>Fine grinding</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Fracture strength</topic><topic>Grinding</topic><topic>Impact analysis</topic><topic>Indentation</topic><topic>Integrated circuit fabrication</topic><topic>Laws, regulations and rules</topic><topic>Prefabrication</topic><topic>Propagation</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Bingyao</creatorcontrib><creatorcontrib>Huang, Ning</creatorcontrib><creatorcontrib>Dai, Siyang</creatorcontrib><creatorcontrib>Zhou, Ping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Bingyao</au><au>Huang, Ning</au><au>Dai, Siyang</au><au>Zhou, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of Prefabricated Crack Propagation on Monocrystalline Silicon Surfaces for Grinding Damage Analysis</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-08-03</date><risdate>2024</risdate><volume>17</volume><issue>15</issue><spage>3852</spage><pages>3852-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Crack generation and propagation are critical aspects of grinding processes for hard and brittle materials. Despite extensive research, the impact of residual cracks from coarse grinding on the cracks generated during fine grinding remains unexplored. This study aims to bridge this gap by examining the propagation law of existing cracks under indentation using the extended finite element method. The results reveal that prefabricated cracks with depths less than the crack depth produced on an undamaged surface tend to extend further without surpassing the latter. Conversely, deeper prefabricated cracks do not exhibit significant expansion. A novel method combining indentation and prefabricated cracks with fracture strength tests is proposed to determine crack propagation. Silicon wafers with varying damaged surfaces are analyzed, and changes in fracture strength, measured by the ball-on-ring method, are utilized to determine crack propagation. The experimental results confirm the proposed crack evolution law, validated by damage assessments across different grinding processes, which is suitable for crack damage. The findings demonstrate that residual cracks from coarse grinding are negligible in predicting the maximum crack depth during fine grinding. This research provides a crucial foundation for optimizing the wafer thinning process in 3D stacked chip manufacturing, establishing that changes in fracture strength are a reliable indicator of crack propagation feasibility.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39124516</pmid><doi>10.3390/ma17153852</doi><orcidid>https://orcid.org/0000-0002-4560-6888</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-08, Vol.17 (15), p.3852 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_miscellaneous_3091285503 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Brittle materials Crack initiation Crack propagation Cracking (fracturing) Damage assessment Efficiency Fine grinding Finite element analysis Finite element method Fracture mechanics Fracture strength Grinding Impact analysis Indentation Integrated circuit fabrication Laws, regulations and rules Prefabrication Propagation Silicon Silicon wafers Simulation |
title | Study of Prefabricated Crack Propagation on Monocrystalline Silicon Surfaces for Grinding Damage Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A30%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20Prefabricated%20Crack%20Propagation%20on%20Monocrystalline%20Silicon%20Surfaces%20for%20Grinding%20Damage%20Analysis&rft.jtitle=Materials&rft.au=Zhao,%20Bingyao&rft.date=2024-08-03&rft.volume=17&rft.issue=15&rft.spage=3852&rft.pages=3852-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17153852&rft_dat=%3Cgale_proqu%3EA804514624%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090954563&rft_id=info:pmid/39124516&rft_galeid=A804514624&rfr_iscdi=true |