X-IGA Used for Orthotropic Material Crack Growth

In this paper, we propose a new approach for numerically simulating the growth of cracks in unidirectional composite materials, termed extended isogeometric analysis, evaluating the maximum stress intensity factor and T-stress. To validate our approach, we used a small anisotropic plate with two edg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-08, Vol.17 (15), p.3830
Hauptverfasser: Berrada Gouzi, Mohammed, El Khalfi, Ahmed, Vlase, Sorin, Scutaru, Maria Luminita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page 3830
container_title Materials
container_volume 17
creator Berrada Gouzi, Mohammed
El Khalfi, Ahmed
Vlase, Sorin
Scutaru, Maria Luminita
description In this paper, we propose a new approach for numerically simulating the growth of cracks in unidirectional composite materials, termed extended isogeometric analysis, evaluating the maximum stress intensity factor and T-stress. To validate our approach, we used a small anisotropic plate with two edge cracks, beginning with formulating the governing equations based on the energy integral method, Stroh's Formula, and the Elastic Law describing the behaviour of anisotropic materials, while considering boundary conditions and initial states. A MATLAB code was developed to solve these equations numerically and to post-process the tensile stress and the stress intensity factor (SIF) in the first mode. The results for the SIF closely match those obtained using the extended finite element method (X-FEM), with a discrepancy of only 0.0021 Pa·m . This finding underscores the credibility of our approach. The extended finite element method has demonstrated robustness in predicting crack propagation in composite materials in recent years, leading to its adoption by several widely used software packages in various industries.
doi_str_mv 10.3390/ma17153830
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3091285290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804513399</galeid><sourcerecordid>A804513399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-be6be170d2f401c7fed49b5335c2371337b7e58165b40123e541b74daecd69823</originalsourceid><addsrcrecordid>eNpdkF9LwzAUxYMobsy9-AGk4IsInUlv0jaPY-gcTPbiwLeSpreus21m0iJ-ezM2_-DNww3J71zOPYRcMjoBkPSuUSxhAlKgJ2TIpIxDJjk__XMfkLFzW-oLgKWRPCcDkCziXMKQ0JdwMZ8Ga4dFUBobrGy3MZ01u0oHT6pDW6k6mFml34K5NR_d5oKclap2OD72EVk_3D_PHsPlar6YTZehjhLZhTnGObKEFlHJKdNJiQWXuQAQOoKEASR5giJlscj9fwQoOMsTXijURSzTCEbk5jB3Z817j67LmspprGvVouldBtTvkIpIUo9e_0O3pretd7enqBSMs9RTkwP1qmrMqrb0ayrtT4FNpU2LZeXfpynlwtuT0gtuDwJtjXMWy2xnq0bZz4zRbJ999pu9h6-OHvq8weIH_U4avgBPunoS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090951418</pqid></control><display><type>article</type><title>X-IGA Used for Orthotropic Material Crack Growth</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Berrada Gouzi, Mohammed ; El Khalfi, Ahmed ; Vlase, Sorin ; Scutaru, Maria Luminita</creator><creatorcontrib>Berrada Gouzi, Mohammed ; El Khalfi, Ahmed ; Vlase, Sorin ; Scutaru, Maria Luminita</creatorcontrib><description>In this paper, we propose a new approach for numerically simulating the growth of cracks in unidirectional composite materials, termed extended isogeometric analysis, evaluating the maximum stress intensity factor and T-stress. To validate our approach, we used a small anisotropic plate with two edge cracks, beginning with formulating the governing equations based on the energy integral method, Stroh's Formula, and the Elastic Law describing the behaviour of anisotropic materials, while considering boundary conditions and initial states. A MATLAB code was developed to solve these equations numerically and to post-process the tensile stress and the stress intensity factor (SIF) in the first mode. The results for the SIF closely match those obtained using the extended finite element method (X-FEM), with a discrepancy of only 0.0021 Pa·m . This finding underscores the credibility of our approach. The extended finite element method has demonstrated robustness in predicting crack propagation in composite materials in recent years, leading to its adoption by several widely used software packages in various industries.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17153830</identifier><identifier>PMID: 39124493</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Anisotropic plates ; Anisotropy ; Boundary conditions ; Composite materials ; Crack propagation ; Edge cracks ; Elastic anisotropy ; Energy ; Finite element method ; Geometry ; Propagation ; Simulation ; Stress intensity factors ; Tensile stress ; Unidirectional composites</subject><ispartof>Materials, 2024-08, Vol.17 (15), p.3830</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-be6be170d2f401c7fed49b5335c2371337b7e58165b40123e541b74daecd69823</cites><orcidid>0000-0002-0132-1282 ; 0000-0001-8679-2579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39124493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Berrada Gouzi, Mohammed</creatorcontrib><creatorcontrib>El Khalfi, Ahmed</creatorcontrib><creatorcontrib>Vlase, Sorin</creatorcontrib><creatorcontrib>Scutaru, Maria Luminita</creatorcontrib><title>X-IGA Used for Orthotropic Material Crack Growth</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>In this paper, we propose a new approach for numerically simulating the growth of cracks in unidirectional composite materials, termed extended isogeometric analysis, evaluating the maximum stress intensity factor and T-stress. To validate our approach, we used a small anisotropic plate with two edge cracks, beginning with formulating the governing equations based on the energy integral method, Stroh's Formula, and the Elastic Law describing the behaviour of anisotropic materials, while considering boundary conditions and initial states. A MATLAB code was developed to solve these equations numerically and to post-process the tensile stress and the stress intensity factor (SIF) in the first mode. The results for the SIF closely match those obtained using the extended finite element method (X-FEM), with a discrepancy of only 0.0021 Pa·m . This finding underscores the credibility of our approach. The extended finite element method has demonstrated robustness in predicting crack propagation in composite materials in recent years, leading to its adoption by several widely used software packages in various industries.</description><subject>Anisotropic plates</subject><subject>Anisotropy</subject><subject>Boundary conditions</subject><subject>Composite materials</subject><subject>Crack propagation</subject><subject>Edge cracks</subject><subject>Elastic anisotropy</subject><subject>Energy</subject><subject>Finite element method</subject><subject>Geometry</subject><subject>Propagation</subject><subject>Simulation</subject><subject>Stress intensity factors</subject><subject>Tensile stress</subject><subject>Unidirectional composites</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkF9LwzAUxYMobsy9-AGk4IsInUlv0jaPY-gcTPbiwLeSpreus21m0iJ-ezM2_-DNww3J71zOPYRcMjoBkPSuUSxhAlKgJ2TIpIxDJjk__XMfkLFzW-oLgKWRPCcDkCziXMKQ0JdwMZ8Ga4dFUBobrGy3MZ01u0oHT6pDW6k6mFml34K5NR_d5oKclap2OD72EVk_3D_PHsPlar6YTZehjhLZhTnGObKEFlHJKdNJiQWXuQAQOoKEASR5giJlscj9fwQoOMsTXijURSzTCEbk5jB3Z817j67LmspprGvVouldBtTvkIpIUo9e_0O3pretd7enqBSMs9RTkwP1qmrMqrb0ayrtT4FNpU2LZeXfpynlwtuT0gtuDwJtjXMWy2xnq0bZz4zRbJ999pu9h6-OHvq8weIH_U4avgBPunoS</recordid><startdate>20240802</startdate><enddate>20240802</enddate><creator>Berrada Gouzi, Mohammed</creator><creator>El Khalfi, Ahmed</creator><creator>Vlase, Sorin</creator><creator>Scutaru, Maria Luminita</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0132-1282</orcidid><orcidid>https://orcid.org/0000-0001-8679-2579</orcidid></search><sort><creationdate>20240802</creationdate><title>X-IGA Used for Orthotropic Material Crack Growth</title><author>Berrada Gouzi, Mohammed ; El Khalfi, Ahmed ; Vlase, Sorin ; Scutaru, Maria Luminita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-be6be170d2f401c7fed49b5335c2371337b7e58165b40123e541b74daecd69823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropic plates</topic><topic>Anisotropy</topic><topic>Boundary conditions</topic><topic>Composite materials</topic><topic>Crack propagation</topic><topic>Edge cracks</topic><topic>Elastic anisotropy</topic><topic>Energy</topic><topic>Finite element method</topic><topic>Geometry</topic><topic>Propagation</topic><topic>Simulation</topic><topic>Stress intensity factors</topic><topic>Tensile stress</topic><topic>Unidirectional composites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berrada Gouzi, Mohammed</creatorcontrib><creatorcontrib>El Khalfi, Ahmed</creatorcontrib><creatorcontrib>Vlase, Sorin</creatorcontrib><creatorcontrib>Scutaru, Maria Luminita</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berrada Gouzi, Mohammed</au><au>El Khalfi, Ahmed</au><au>Vlase, Sorin</au><au>Scutaru, Maria Luminita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-IGA Used for Orthotropic Material Crack Growth</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-08-02</date><risdate>2024</risdate><volume>17</volume><issue>15</issue><spage>3830</spage><pages>3830-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In this paper, we propose a new approach for numerically simulating the growth of cracks in unidirectional composite materials, termed extended isogeometric analysis, evaluating the maximum stress intensity factor and T-stress. To validate our approach, we used a small anisotropic plate with two edge cracks, beginning with formulating the governing equations based on the energy integral method, Stroh's Formula, and the Elastic Law describing the behaviour of anisotropic materials, while considering boundary conditions and initial states. A MATLAB code was developed to solve these equations numerically and to post-process the tensile stress and the stress intensity factor (SIF) in the first mode. The results for the SIF closely match those obtained using the extended finite element method (X-FEM), with a discrepancy of only 0.0021 Pa·m . This finding underscores the credibility of our approach. The extended finite element method has demonstrated robustness in predicting crack propagation in composite materials in recent years, leading to its adoption by several widely used software packages in various industries.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39124493</pmid><doi>10.3390/ma17153830</doi><orcidid>https://orcid.org/0000-0002-0132-1282</orcidid><orcidid>https://orcid.org/0000-0001-8679-2579</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-08, Vol.17 (15), p.3830
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_3091285290
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Anisotropic plates
Anisotropy
Boundary conditions
Composite materials
Crack propagation
Edge cracks
Elastic anisotropy
Energy
Finite element method
Geometry
Propagation
Simulation
Stress intensity factors
Tensile stress
Unidirectional composites
title X-IGA Used for Orthotropic Material Crack Growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-IGA%20Used%20for%20Orthotropic%20Material%20Crack%20Growth&rft.jtitle=Materials&rft.au=Berrada%20Gouzi,%20Mohammed&rft.date=2024-08-02&rft.volume=17&rft.issue=15&rft.spage=3830&rft.pages=3830-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17153830&rft_dat=%3Cgale_proqu%3EA804513399%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090951418&rft_id=info:pmid/39124493&rft_galeid=A804513399&rfr_iscdi=true