Adversarial EM for variational deep learning: Application to semi-supervised image quality enhancement in low-dose PET and low-dose CT

In positron emission tomography (PET) and X-ray computed tomography (CT), reducing radiation dose can cause significant degradation in image quality. For image quality enhancement in low-dose PET and CT, we propose a novel theoretical adversarial and variational deep neural network (DNN) framework r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2024-10, Vol.97, p.103291, Article 103291
Hauptverfasser: Sharma, Vatsala, Awate, Suyash P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103291
container_title Medical image analysis
container_volume 97
creator Sharma, Vatsala
Awate, Suyash P.
description In positron emission tomography (PET) and X-ray computed tomography (CT), reducing radiation dose can cause significant degradation in image quality. For image quality enhancement in low-dose PET and CT, we propose a novel theoretical adversarial and variational deep neural network (DNN) framework relying on expectation maximization (EM) based learning, termed adversarial EM (AdvEM). AdvEM proposes an encoder–decoder architecture with a multiscale latent space, and generalized-Gaussian models enabling datum-specific robust statistical modeling in latent space and image space. The model robustness is further enhanced by including adversarial learning in the training protocol. Unlike typical variational-DNN learning, AdvEM proposes latent-space sampling from the posterior distribution, and uses a Metropolis–Hastings scheme. Unlike existing schemes for PET or CT image enhancement which train using pairs of low-dose images with their corresponding normal-dose versions, we propose a semi-supervised AdvEM (ssAdvEM) framework that enables learning using a small number of normal-dose images. AdvEM and ssAdvEM enable per-pixel uncertainty estimates for their outputs. Empirical analyses on real-world PET and CT data involving many baselines, out-of-distribution data, and ablation studies show the benefits of the proposed framework. [Display omitted] •Expectation-maximization based variational deep learning for Low-Dose PET and CT•Adversarial learning for improved robustness with respect to out-of-distribution data•Variational learning with posterior distribution sampling using Metropolis Hastings•Multiscale latent space modeled by a Generalized Gaussian distribution•Semi-supervised learning utilizing a larger set of low-dose images than normal-dose•The framework supports uncertainty mapping corresponding to the outputs it produces
doi_str_mv 10.1016/j.media.2024.103291
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3091282379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841524002160</els_id><sourcerecordid>3091282379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c239t-14f23f60eec1775b3f4ec50b1d2df2b1eecd0a7d423b664e746fddd28a785df83</originalsourceid><addsrcrecordid>eNp9Uctu2zAQJIIWebVfUKDgsRc5fOnhAj0YhpsESNEcnDNBkcuUhkQqpOQiP5DvDv1ocutpubOzXMwMQl8omVFCq6vNrAfj1IwRJjLC2ZyeoHPKK1o0gvEPb29anqGLlDaEkFoIcorO-JwyWoryHL0szBZiUtGpDq9-YRsi3u660QWfIQMw4A5U9M4_fseLYeic3g_xGHCC3hVpGiBuXQKDXa8eAT9NqnPjMwb_R3kNPfgRO4-78LcwIQG-X62x8uYdWK4_oY9WdQk-H-slevi5Wi9virvf17fLxV2hGZ-PBRWWcVsRAE3rumy5FaBL0lLDjGUtzbghqjZZfltVAmpRWWMMa1TdlMY2_BJ9O_w7xPA0QRpl75KGrlMewpQkJ9mZhvF6nqn8QNUxpBTByiFmffFZUiJ3AciN3AcgdwHIQwB56-vxwNTm6dvOP8cz4ceBAFnm1kGUSTvINhkXQY_SBPffA68JMpmU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091282379</pqid></control><display><type>article</type><title>Adversarial EM for variational deep learning: Application to semi-supervised image quality enhancement in low-dose PET and low-dose CT</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Sharma, Vatsala ; Awate, Suyash P.</creator><creatorcontrib>Sharma, Vatsala ; Awate, Suyash P. ; for the</creatorcontrib><description>In positron emission tomography (PET) and X-ray computed tomography (CT), reducing radiation dose can cause significant degradation in image quality. For image quality enhancement in low-dose PET and CT, we propose a novel theoretical adversarial and variational deep neural network (DNN) framework relying on expectation maximization (EM) based learning, termed adversarial EM (AdvEM). AdvEM proposes an encoder–decoder architecture with a multiscale latent space, and generalized-Gaussian models enabling datum-specific robust statistical modeling in latent space and image space. The model robustness is further enhanced by including adversarial learning in the training protocol. Unlike typical variational-DNN learning, AdvEM proposes latent-space sampling from the posterior distribution, and uses a Metropolis–Hastings scheme. Unlike existing schemes for PET or CT image enhancement which train using pairs of low-dose images with their corresponding normal-dose versions, we propose a semi-supervised AdvEM (ssAdvEM) framework that enables learning using a small number of normal-dose images. AdvEM and ssAdvEM enable per-pixel uncertainty estimates for their outputs. Empirical analyses on real-world PET and CT data involving many baselines, out-of-distribution data, and ablation studies show the benefits of the proposed framework. [Display omitted] •Expectation-maximization based variational deep learning for Low-Dose PET and CT•Adversarial learning for improved robustness with respect to out-of-distribution data•Variational learning with posterior distribution sampling using Metropolis Hastings•Multiscale latent space modeled by a Generalized Gaussian distribution•Semi-supervised learning utilizing a larger set of low-dose images than normal-dose•The framework supports uncertainty mapping corresponding to the outputs it produces</description><identifier>ISSN: 1361-8415</identifier><identifier>ISSN: 1361-8423</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2024.103291</identifier><identifier>PMID: 39121545</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adversarial training ; Algorithms ; Deep Learning ; Expectation maximization ; Generalized Gaussian ; Humans ; Image Enhancement - methods ; Low-dose CT ; Low-dose PET ; Metropolis–Hastings ; Neural Networks, Computer ; Out-of-distribution data ; Positron-Emission Tomography - methods ; Radiation Dosage ; Robust model ; Semi-supervision ; Supervised Machine Learning ; Tomography, X-Ray Computed - methods ; Uncertainty-aware model ; Variational deep learning</subject><ispartof>Medical image analysis, 2024-10, Vol.97, p.103291, Article 103291</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c239t-14f23f60eec1775b3f4ec50b1d2df2b1eecd0a7d423b664e746fddd28a785df83</cites><orcidid>0000-0003-3751-944X ; 0000-0002-4945-9539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1361841524002160$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39121545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Vatsala</creatorcontrib><creatorcontrib>Awate, Suyash P.</creatorcontrib><creatorcontrib>for the</creatorcontrib><title>Adversarial EM for variational deep learning: Application to semi-supervised image quality enhancement in low-dose PET and low-dose CT</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>In positron emission tomography (PET) and X-ray computed tomography (CT), reducing radiation dose can cause significant degradation in image quality. For image quality enhancement in low-dose PET and CT, we propose a novel theoretical adversarial and variational deep neural network (DNN) framework relying on expectation maximization (EM) based learning, termed adversarial EM (AdvEM). AdvEM proposes an encoder–decoder architecture with a multiscale latent space, and generalized-Gaussian models enabling datum-specific robust statistical modeling in latent space and image space. The model robustness is further enhanced by including adversarial learning in the training protocol. Unlike typical variational-DNN learning, AdvEM proposes latent-space sampling from the posterior distribution, and uses a Metropolis–Hastings scheme. Unlike existing schemes for PET or CT image enhancement which train using pairs of low-dose images with their corresponding normal-dose versions, we propose a semi-supervised AdvEM (ssAdvEM) framework that enables learning using a small number of normal-dose images. AdvEM and ssAdvEM enable per-pixel uncertainty estimates for their outputs. Empirical analyses on real-world PET and CT data involving many baselines, out-of-distribution data, and ablation studies show the benefits of the proposed framework. [Display omitted] •Expectation-maximization based variational deep learning for Low-Dose PET and CT•Adversarial learning for improved robustness with respect to out-of-distribution data•Variational learning with posterior distribution sampling using Metropolis Hastings•Multiscale latent space modeled by a Generalized Gaussian distribution•Semi-supervised learning utilizing a larger set of low-dose images than normal-dose•The framework supports uncertainty mapping corresponding to the outputs it produces</description><subject>Adversarial training</subject><subject>Algorithms</subject><subject>Deep Learning</subject><subject>Expectation maximization</subject><subject>Generalized Gaussian</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Low-dose CT</subject><subject>Low-dose PET</subject><subject>Metropolis–Hastings</subject><subject>Neural Networks, Computer</subject><subject>Out-of-distribution data</subject><subject>Positron-Emission Tomography - methods</subject><subject>Radiation Dosage</subject><subject>Robust model</subject><subject>Semi-supervision</subject><subject>Supervised Machine Learning</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Uncertainty-aware model</subject><subject>Variational deep learning</subject><issn>1361-8415</issn><issn>1361-8423</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Uctu2zAQJIIWebVfUKDgsRc5fOnhAj0YhpsESNEcnDNBkcuUhkQqpOQiP5DvDv1ocutpubOzXMwMQl8omVFCq6vNrAfj1IwRJjLC2ZyeoHPKK1o0gvEPb29anqGLlDaEkFoIcorO-JwyWoryHL0szBZiUtGpDq9-YRsi3u660QWfIQMw4A5U9M4_fseLYeic3g_xGHCC3hVpGiBuXQKDXa8eAT9NqnPjMwb_R3kNPfgRO4-78LcwIQG-X62x8uYdWK4_oY9WdQk-H-slevi5Wi9virvf17fLxV2hGZ-PBRWWcVsRAE3rumy5FaBL0lLDjGUtzbghqjZZfltVAmpRWWMMa1TdlMY2_BJ9O_w7xPA0QRpl75KGrlMewpQkJ9mZhvF6nqn8QNUxpBTByiFmffFZUiJ3AciN3AcgdwHIQwB56-vxwNTm6dvOP8cz4ceBAFnm1kGUSTvINhkXQY_SBPffA68JMpmU</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Sharma, Vatsala</creator><creator>Awate, Suyash P.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3751-944X</orcidid><orcidid>https://orcid.org/0000-0002-4945-9539</orcidid></search><sort><creationdate>202410</creationdate><title>Adversarial EM for variational deep learning: Application to semi-supervised image quality enhancement in low-dose PET and low-dose CT</title><author>Sharma, Vatsala ; Awate, Suyash P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c239t-14f23f60eec1775b3f4ec50b1d2df2b1eecd0a7d423b664e746fddd28a785df83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adversarial training</topic><topic>Algorithms</topic><topic>Deep Learning</topic><topic>Expectation maximization</topic><topic>Generalized Gaussian</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Low-dose CT</topic><topic>Low-dose PET</topic><topic>Metropolis–Hastings</topic><topic>Neural Networks, Computer</topic><topic>Out-of-distribution data</topic><topic>Positron-Emission Tomography - methods</topic><topic>Radiation Dosage</topic><topic>Robust model</topic><topic>Semi-supervision</topic><topic>Supervised Machine Learning</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Uncertainty-aware model</topic><topic>Variational deep learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Vatsala</creatorcontrib><creatorcontrib>Awate, Suyash P.</creatorcontrib><creatorcontrib>for the</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Vatsala</au><au>Awate, Suyash P.</au><aucorp>for the</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adversarial EM for variational deep learning: Application to semi-supervised image quality enhancement in low-dose PET and low-dose CT</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2024-10</date><risdate>2024</risdate><volume>97</volume><spage>103291</spage><pages>103291-</pages><artnum>103291</artnum><issn>1361-8415</issn><issn>1361-8423</issn><eissn>1361-8423</eissn><abstract>In positron emission tomography (PET) and X-ray computed tomography (CT), reducing radiation dose can cause significant degradation in image quality. For image quality enhancement in low-dose PET and CT, we propose a novel theoretical adversarial and variational deep neural network (DNN) framework relying on expectation maximization (EM) based learning, termed adversarial EM (AdvEM). AdvEM proposes an encoder–decoder architecture with a multiscale latent space, and generalized-Gaussian models enabling datum-specific robust statistical modeling in latent space and image space. The model robustness is further enhanced by including adversarial learning in the training protocol. Unlike typical variational-DNN learning, AdvEM proposes latent-space sampling from the posterior distribution, and uses a Metropolis–Hastings scheme. Unlike existing schemes for PET or CT image enhancement which train using pairs of low-dose images with their corresponding normal-dose versions, we propose a semi-supervised AdvEM (ssAdvEM) framework that enables learning using a small number of normal-dose images. AdvEM and ssAdvEM enable per-pixel uncertainty estimates for their outputs. Empirical analyses on real-world PET and CT data involving many baselines, out-of-distribution data, and ablation studies show the benefits of the proposed framework. [Display omitted] •Expectation-maximization based variational deep learning for Low-Dose PET and CT•Adversarial learning for improved robustness with respect to out-of-distribution data•Variational learning with posterior distribution sampling using Metropolis Hastings•Multiscale latent space modeled by a Generalized Gaussian distribution•Semi-supervised learning utilizing a larger set of low-dose images than normal-dose•The framework supports uncertainty mapping corresponding to the outputs it produces</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39121545</pmid><doi>10.1016/j.media.2024.103291</doi><orcidid>https://orcid.org/0000-0003-3751-944X</orcidid><orcidid>https://orcid.org/0000-0002-4945-9539</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2024-10, Vol.97, p.103291, Article 103291
issn 1361-8415
1361-8423
1361-8423
language eng
recordid cdi_proquest_miscellaneous_3091282379
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adversarial training
Algorithms
Deep Learning
Expectation maximization
Generalized Gaussian
Humans
Image Enhancement - methods
Low-dose CT
Low-dose PET
Metropolis–Hastings
Neural Networks, Computer
Out-of-distribution data
Positron-Emission Tomography - methods
Radiation Dosage
Robust model
Semi-supervision
Supervised Machine Learning
Tomography, X-Ray Computed - methods
Uncertainty-aware model
Variational deep learning
title Adversarial EM for variational deep learning: Application to semi-supervised image quality enhancement in low-dose PET and low-dose CT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adversarial%20EM%20for%20variational%20deep%20learning:%20Application%20to%20semi-supervised%20image%20quality%20enhancement%20in%20low-dose%20PET%20and%20low-dose%20CT&rft.jtitle=Medical%20image%20analysis&rft.au=Sharma,%20Vatsala&rft.aucorp=for%20the&rft.date=2024-10&rft.volume=97&rft.spage=103291&rft.pages=103291-&rft.artnum=103291&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2024.103291&rft_dat=%3Cproquest_cross%3E3091282379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3091282379&rft_id=info:pmid/39121545&rft_els_id=S1361841524002160&rfr_iscdi=true