Linear diffusion noise boosted deep image prior for unsupervised sparse-view CT reconstruction
Deep learning has markedly enhanced the performance of sparse-view computed tomography reconstruction. However, the dependence of these methods on supervised training using high-quality paired datasets, and the necessity for retraining under varied physical acquisition conditions, constrain their ge...
Gespeichert in:
Veröffentlicht in: | Physics in medicine & biology 2024-08, Vol.69 (16), p.165029 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 165029 |
container_title | Physics in medicine & biology |
container_volume | 69 |
creator | Wu, Jia Jiang, Xiaoming Zhong, Lisha Zheng, Wei Li, Xinwei Lin, Jinzhao Li, Zhangyong |
description | Deep learning has markedly enhanced the performance of sparse-view computed tomography reconstruction. However, the dependence of these methods on supervised training using high-quality paired datasets, and the necessity for retraining under varied physical acquisition conditions, constrain their generalizability across new imaging contexts and settings.
To overcome these limitations, we propose an unsupervised approach grounded in the deep image prior framework. Our approach advances beyond the conventional single noise level input by incorporating multi-level linear diffusion noise, significantly mitigating the risk of overfitting. Furthermore, we embed non-local self-similarity as a deep implicit prior within a self-attention network structure, improving the model's capability to identify and utilize repetitive patterns throughout the image. Additionally, leveraging imaging physics, gradient backpropagation is performed between the image domain and projection data space to optimize network weights.
Evaluations with both simulated and clinical cases demonstrate our method's effective zero-shot adaptability across various projection views, highlighting its robustness and flexibility. Additionally, our approach effectively eliminates noise and streak artifacts while significantly restoring intricate image details.
. Our method aims to overcome the limitations in current supervised deep learning-based sparse-view CT reconstruction, offering improved generalizability and adaptability without the need for extensive paired training data. |
doi_str_mv | 10.1088/1361-6560/ad69f7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3090949765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090949765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-35e8c2d8d537d13d8a96e532b4361cf3eddeb9373c480c4990f36bd1aa41a3c53</originalsourceid><addsrcrecordid>eNp1kEtLAzEURoMotj72riRLF45NJpN0spTiCwpu6taQSW4k0pmMyUzFf29KfWwUEgLh3O_yHYTOKLmipK5nlAlaCC7ITFsh3XwPTX--9tGUEEYLSTmfoKOUXgmhtC6rQzRhklIpZT1Fz0vfgY7YeufG5EOHu-AT4CaENIDFFqDHvtUvgPvoQ8Qu37FLYw9xk0GLU69jgmLj4R0vVjiCCV0a4miGnHaCDpxeJzj9eo_R0-3NanFfLB_vHhbXy8KUvBwKxqE2pa0tZ3NLma21FMBZ2VS5jXEMrIVGsjkzVU1MJSVxTDSWal1RzQxnx-hil9vH8DZCGlTrk4H1WncQxqQYkURWci62KNmhJoaUIjiVi7U6fihK1Naq2ipUW4VqZzWPnH-lj00L9mfgW-Pveh969RrG2OWyqm8bJaSiIh9OSql66zJ6-Qf67-pPJiiPsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090949765</pqid></control><display><type>article</type><title>Linear diffusion noise boosted deep image prior for unsupervised sparse-view CT reconstruction</title><source>Institute of Physics Journals</source><source>MEDLINE</source><creator>Wu, Jia ; Jiang, Xiaoming ; Zhong, Lisha ; Zheng, Wei ; Li, Xinwei ; Lin, Jinzhao ; Li, Zhangyong</creator><creatorcontrib>Wu, Jia ; Jiang, Xiaoming ; Zhong, Lisha ; Zheng, Wei ; Li, Xinwei ; Lin, Jinzhao ; Li, Zhangyong</creatorcontrib><description>Deep learning has markedly enhanced the performance of sparse-view computed tomography reconstruction. However, the dependence of these methods on supervised training using high-quality paired datasets, and the necessity for retraining under varied physical acquisition conditions, constrain their generalizability across new imaging contexts and settings.
To overcome these limitations, we propose an unsupervised approach grounded in the deep image prior framework. Our approach advances beyond the conventional single noise level input by incorporating multi-level linear diffusion noise, significantly mitigating the risk of overfitting. Furthermore, we embed non-local self-similarity as a deep implicit prior within a self-attention network structure, improving the model's capability to identify and utilize repetitive patterns throughout the image. Additionally, leveraging imaging physics, gradient backpropagation is performed between the image domain and projection data space to optimize network weights.
Evaluations with both simulated and clinical cases demonstrate our method's effective zero-shot adaptability across various projection views, highlighting its robustness and flexibility. Additionally, our approach effectively eliminates noise and streak artifacts while significantly restoring intricate image details.
. Our method aims to overcome the limitations in current supervised deep learning-based sparse-view CT reconstruction, offering improved generalizability and adaptability without the need for extensive paired training data.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ad69f7</identifier><identifier>PMID: 39119998</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>deep image prior (DIP) ; Deep Learning ; Diffusion ; diffusion noise ; Humans ; Image Processing, Computer-Assisted - methods ; multi-head attention ; Signal-To-Noise Ratio ; sparse-view ; Tomography, X-Ray Computed ; unsupervised CT reconstruction ; Unsupervised Machine Learning</subject><ispartof>Physics in medicine & biology, 2024-08, Vol.69 (16), p.165029</ispartof><rights>2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-35e8c2d8d537d13d8a96e532b4361cf3eddeb9373c480c4990f36bd1aa41a3c53</cites><orcidid>0000-0002-8184-1578 ; 0000-0003-0713-9366 ; 0000-0002-3918-069X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/ad69f7/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39119998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Jia</creatorcontrib><creatorcontrib>Jiang, Xiaoming</creatorcontrib><creatorcontrib>Zhong, Lisha</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Li, Xinwei</creatorcontrib><creatorcontrib>Lin, Jinzhao</creatorcontrib><creatorcontrib>Li, Zhangyong</creatorcontrib><title>Linear diffusion noise boosted deep image prior for unsupervised sparse-view CT reconstruction</title><title>Physics in medicine & biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>Deep learning has markedly enhanced the performance of sparse-view computed tomography reconstruction. However, the dependence of these methods on supervised training using high-quality paired datasets, and the necessity for retraining under varied physical acquisition conditions, constrain their generalizability across new imaging contexts and settings.
To overcome these limitations, we propose an unsupervised approach grounded in the deep image prior framework. Our approach advances beyond the conventional single noise level input by incorporating multi-level linear diffusion noise, significantly mitigating the risk of overfitting. Furthermore, we embed non-local self-similarity as a deep implicit prior within a self-attention network structure, improving the model's capability to identify and utilize repetitive patterns throughout the image. Additionally, leveraging imaging physics, gradient backpropagation is performed between the image domain and projection data space to optimize network weights.
Evaluations with both simulated and clinical cases demonstrate our method's effective zero-shot adaptability across various projection views, highlighting its robustness and flexibility. Additionally, our approach effectively eliminates noise and streak artifacts while significantly restoring intricate image details.
. Our method aims to overcome the limitations in current supervised deep learning-based sparse-view CT reconstruction, offering improved generalizability and adaptability without the need for extensive paired training data.</description><subject>deep image prior (DIP)</subject><subject>Deep Learning</subject><subject>Diffusion</subject><subject>diffusion noise</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>multi-head attention</subject><subject>Signal-To-Noise Ratio</subject><subject>sparse-view</subject><subject>Tomography, X-Ray Computed</subject><subject>unsupervised CT reconstruction</subject><subject>Unsupervised Machine Learning</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNp1kEtLAzEURoMotj72riRLF45NJpN0spTiCwpu6taQSW4k0pmMyUzFf29KfWwUEgLh3O_yHYTOKLmipK5nlAlaCC7ITFsh3XwPTX--9tGUEEYLSTmfoKOUXgmhtC6rQzRhklIpZT1Fz0vfgY7YeufG5EOHu-AT4CaENIDFFqDHvtUvgPvoQ8Qu37FLYw9xk0GLU69jgmLj4R0vVjiCCV0a4miGnHaCDpxeJzj9eo_R0-3NanFfLB_vHhbXy8KUvBwKxqE2pa0tZ3NLma21FMBZ2VS5jXEMrIVGsjkzVU1MJSVxTDSWal1RzQxnx-hil9vH8DZCGlTrk4H1WncQxqQYkURWci62KNmhJoaUIjiVi7U6fihK1Naq2ipUW4VqZzWPnH-lj00L9mfgW-Pveh969RrG2OWyqm8bJaSiIh9OSql66zJ6-Qf67-pPJiiPsA</recordid><startdate>20240821</startdate><enddate>20240821</enddate><creator>Wu, Jia</creator><creator>Jiang, Xiaoming</creator><creator>Zhong, Lisha</creator><creator>Zheng, Wei</creator><creator>Li, Xinwei</creator><creator>Lin, Jinzhao</creator><creator>Li, Zhangyong</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8184-1578</orcidid><orcidid>https://orcid.org/0000-0003-0713-9366</orcidid><orcidid>https://orcid.org/0000-0002-3918-069X</orcidid></search><sort><creationdate>20240821</creationdate><title>Linear diffusion noise boosted deep image prior for unsupervised sparse-view CT reconstruction</title><author>Wu, Jia ; Jiang, Xiaoming ; Zhong, Lisha ; Zheng, Wei ; Li, Xinwei ; Lin, Jinzhao ; Li, Zhangyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-35e8c2d8d537d13d8a96e532b4361cf3eddeb9373c480c4990f36bd1aa41a3c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>deep image prior (DIP)</topic><topic>Deep Learning</topic><topic>Diffusion</topic><topic>diffusion noise</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>multi-head attention</topic><topic>Signal-To-Noise Ratio</topic><topic>sparse-view</topic><topic>Tomography, X-Ray Computed</topic><topic>unsupervised CT reconstruction</topic><topic>Unsupervised Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jia</creatorcontrib><creatorcontrib>Jiang, Xiaoming</creatorcontrib><creatorcontrib>Zhong, Lisha</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Li, Xinwei</creatorcontrib><creatorcontrib>Lin, Jinzhao</creatorcontrib><creatorcontrib>Li, Zhangyong</creatorcontrib><collection>IOP_英国物理学会OA刊</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jia</au><au>Jiang, Xiaoming</au><au>Zhong, Lisha</au><au>Zheng, Wei</au><au>Li, Xinwei</au><au>Lin, Jinzhao</au><au>Li, Zhangyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear diffusion noise boosted deep image prior for unsupervised sparse-view CT reconstruction</atitle><jtitle>Physics in medicine & biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2024-08-21</date><risdate>2024</risdate><volume>69</volume><issue>16</issue><spage>165029</spage><pages>165029-</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Deep learning has markedly enhanced the performance of sparse-view computed tomography reconstruction. However, the dependence of these methods on supervised training using high-quality paired datasets, and the necessity for retraining under varied physical acquisition conditions, constrain their generalizability across new imaging contexts and settings.
To overcome these limitations, we propose an unsupervised approach grounded in the deep image prior framework. Our approach advances beyond the conventional single noise level input by incorporating multi-level linear diffusion noise, significantly mitigating the risk of overfitting. Furthermore, we embed non-local self-similarity as a deep implicit prior within a self-attention network structure, improving the model's capability to identify and utilize repetitive patterns throughout the image. Additionally, leveraging imaging physics, gradient backpropagation is performed between the image domain and projection data space to optimize network weights.
Evaluations with both simulated and clinical cases demonstrate our method's effective zero-shot adaptability across various projection views, highlighting its robustness and flexibility. Additionally, our approach effectively eliminates noise and streak artifacts while significantly restoring intricate image details.
. Our method aims to overcome the limitations in current supervised deep learning-based sparse-view CT reconstruction, offering improved generalizability and adaptability without the need for extensive paired training data.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>39119998</pmid><doi>10.1088/1361-6560/ad69f7</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8184-1578</orcidid><orcidid>https://orcid.org/0000-0003-0713-9366</orcidid><orcidid>https://orcid.org/0000-0002-3918-069X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2024-08, Vol.69 (16), p.165029 |
issn | 0031-9155 1361-6560 1361-6560 |
language | eng |
recordid | cdi_proquest_miscellaneous_3090949765 |
source | Institute of Physics Journals; MEDLINE |
subjects | deep image prior (DIP) Deep Learning Diffusion diffusion noise Humans Image Processing, Computer-Assisted - methods multi-head attention Signal-To-Noise Ratio sparse-view Tomography, X-Ray Computed unsupervised CT reconstruction Unsupervised Machine Learning |
title | Linear diffusion noise boosted deep image prior for unsupervised sparse-view CT reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20diffusion%20noise%20boosted%20deep%20image%20prior%20for%20unsupervised%20sparse-view%20CT%20reconstruction&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Wu,%20Jia&rft.date=2024-08-21&rft.volume=69&rft.issue=16&rft.spage=165029&rft.pages=165029-&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ad69f7&rft_dat=%3Cproquest_cross%3E3090949765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090949765&rft_id=info:pmid/39119998&rfr_iscdi=true |