Linear diffusion noise boosted deep image prior for unsupervised sparse-view CT reconstruction

Deep learning has markedly enhanced the performance of sparse-view computed tomography reconstruction. However, the dependence of these methods on supervised training using high-quality paired datasets, and the necessity for retraining under varied physical acquisition conditions, constrain their ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2024-08, Vol.69 (16), p.165029
Hauptverfasser: Wu, Jia, Jiang, Xiaoming, Zhong, Lisha, Zheng, Wei, Li, Xinwei, Lin, Jinzhao, Li, Zhangyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 165029
container_title Physics in medicine & biology
container_volume 69
creator Wu, Jia
Jiang, Xiaoming
Zhong, Lisha
Zheng, Wei
Li, Xinwei
Lin, Jinzhao
Li, Zhangyong
description Deep learning has markedly enhanced the performance of sparse-view computed tomography reconstruction. However, the dependence of these methods on supervised training using high-quality paired datasets, and the necessity for retraining under varied physical acquisition conditions, constrain their generalizability across new imaging contexts and settings. To overcome these limitations, we propose an unsupervised approach grounded in the deep image prior framework. Our approach advances beyond the conventional single noise level input by incorporating multi-level linear diffusion noise, significantly mitigating the risk of overfitting. Furthermore, we embed non-local self-similarity as a deep implicit prior within a self-attention network structure, improving the model's capability to identify and utilize repetitive patterns throughout the image. Additionally, leveraging imaging physics, gradient backpropagation is performed between the image domain and projection data space to optimize network weights. Evaluations with both simulated and clinical cases demonstrate our method's effective zero-shot adaptability across various projection views, highlighting its robustness and flexibility. Additionally, our approach effectively eliminates noise and streak artifacts while significantly restoring intricate image details. . Our method aims to overcome the limitations in current supervised deep learning-based sparse-view CT reconstruction, offering improved generalizability and adaptability without the need for extensive paired training data.
doi_str_mv 10.1088/1361-6560/ad69f7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3090949765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090949765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-35e8c2d8d537d13d8a96e532b4361cf3eddeb9373c480c4990f36bd1aa41a3c53</originalsourceid><addsrcrecordid>eNp1kEtLAzEURoMotj72riRLF45NJpN0spTiCwpu6taQSW4k0pmMyUzFf29KfWwUEgLh3O_yHYTOKLmipK5nlAlaCC7ITFsh3XwPTX--9tGUEEYLSTmfoKOUXgmhtC6rQzRhklIpZT1Fz0vfgY7YeufG5EOHu-AT4CaENIDFFqDHvtUvgPvoQ8Qu37FLYw9xk0GLU69jgmLj4R0vVjiCCV0a4miGnHaCDpxeJzj9eo_R0-3NanFfLB_vHhbXy8KUvBwKxqE2pa0tZ3NLma21FMBZ2VS5jXEMrIVGsjkzVU1MJSVxTDSWal1RzQxnx-hil9vH8DZCGlTrk4H1WncQxqQYkURWci62KNmhJoaUIjiVi7U6fihK1Naq2ipUW4VqZzWPnH-lj00L9mfgW-Pveh969RrG2OWyqm8bJaSiIh9OSql66zJ6-Qf67-pPJiiPsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090949765</pqid></control><display><type>article</type><title>Linear diffusion noise boosted deep image prior for unsupervised sparse-view CT reconstruction</title><source>Institute of Physics Journals</source><source>MEDLINE</source><creator>Wu, Jia ; Jiang, Xiaoming ; Zhong, Lisha ; Zheng, Wei ; Li, Xinwei ; Lin, Jinzhao ; Li, Zhangyong</creator><creatorcontrib>Wu, Jia ; Jiang, Xiaoming ; Zhong, Lisha ; Zheng, Wei ; Li, Xinwei ; Lin, Jinzhao ; Li, Zhangyong</creatorcontrib><description>Deep learning has markedly enhanced the performance of sparse-view computed tomography reconstruction. However, the dependence of these methods on supervised training using high-quality paired datasets, and the necessity for retraining under varied physical acquisition conditions, constrain their generalizability across new imaging contexts and settings. To overcome these limitations, we propose an unsupervised approach grounded in the deep image prior framework. Our approach advances beyond the conventional single noise level input by incorporating multi-level linear diffusion noise, significantly mitigating the risk of overfitting. Furthermore, we embed non-local self-similarity as a deep implicit prior within a self-attention network structure, improving the model's capability to identify and utilize repetitive patterns throughout the image. Additionally, leveraging imaging physics, gradient backpropagation is performed between the image domain and projection data space to optimize network weights. Evaluations with both simulated and clinical cases demonstrate our method's effective zero-shot adaptability across various projection views, highlighting its robustness and flexibility. Additionally, our approach effectively eliminates noise and streak artifacts while significantly restoring intricate image details. . Our method aims to overcome the limitations in current supervised deep learning-based sparse-view CT reconstruction, offering improved generalizability and adaptability without the need for extensive paired training data.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ad69f7</identifier><identifier>PMID: 39119998</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>deep image prior (DIP) ; Deep Learning ; Diffusion ; diffusion noise ; Humans ; Image Processing, Computer-Assisted - methods ; multi-head attention ; Signal-To-Noise Ratio ; sparse-view ; Tomography, X-Ray Computed ; unsupervised CT reconstruction ; Unsupervised Machine Learning</subject><ispartof>Physics in medicine &amp; biology, 2024-08, Vol.69 (16), p.165029</ispartof><rights>2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-35e8c2d8d537d13d8a96e532b4361cf3eddeb9373c480c4990f36bd1aa41a3c53</cites><orcidid>0000-0002-8184-1578 ; 0000-0003-0713-9366 ; 0000-0002-3918-069X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/ad69f7/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39119998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Jia</creatorcontrib><creatorcontrib>Jiang, Xiaoming</creatorcontrib><creatorcontrib>Zhong, Lisha</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Li, Xinwei</creatorcontrib><creatorcontrib>Lin, Jinzhao</creatorcontrib><creatorcontrib>Li, Zhangyong</creatorcontrib><title>Linear diffusion noise boosted deep image prior for unsupervised sparse-view CT reconstruction</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>Deep learning has markedly enhanced the performance of sparse-view computed tomography reconstruction. However, the dependence of these methods on supervised training using high-quality paired datasets, and the necessity for retraining under varied physical acquisition conditions, constrain their generalizability across new imaging contexts and settings. To overcome these limitations, we propose an unsupervised approach grounded in the deep image prior framework. Our approach advances beyond the conventional single noise level input by incorporating multi-level linear diffusion noise, significantly mitigating the risk of overfitting. Furthermore, we embed non-local self-similarity as a deep implicit prior within a self-attention network structure, improving the model's capability to identify and utilize repetitive patterns throughout the image. Additionally, leveraging imaging physics, gradient backpropagation is performed between the image domain and projection data space to optimize network weights. Evaluations with both simulated and clinical cases demonstrate our method's effective zero-shot adaptability across various projection views, highlighting its robustness and flexibility. Additionally, our approach effectively eliminates noise and streak artifacts while significantly restoring intricate image details. . Our method aims to overcome the limitations in current supervised deep learning-based sparse-view CT reconstruction, offering improved generalizability and adaptability without the need for extensive paired training data.</description><subject>deep image prior (DIP)</subject><subject>Deep Learning</subject><subject>Diffusion</subject><subject>diffusion noise</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>multi-head attention</subject><subject>Signal-To-Noise Ratio</subject><subject>sparse-view</subject><subject>Tomography, X-Ray Computed</subject><subject>unsupervised CT reconstruction</subject><subject>Unsupervised Machine Learning</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNp1kEtLAzEURoMotj72riRLF45NJpN0spTiCwpu6taQSW4k0pmMyUzFf29KfWwUEgLh3O_yHYTOKLmipK5nlAlaCC7ITFsh3XwPTX--9tGUEEYLSTmfoKOUXgmhtC6rQzRhklIpZT1Fz0vfgY7YeufG5EOHu-AT4CaENIDFFqDHvtUvgPvoQ8Qu37FLYw9xk0GLU69jgmLj4R0vVjiCCV0a4miGnHaCDpxeJzj9eo_R0-3NanFfLB_vHhbXy8KUvBwKxqE2pa0tZ3NLma21FMBZ2VS5jXEMrIVGsjkzVU1MJSVxTDSWal1RzQxnx-hil9vH8DZCGlTrk4H1WncQxqQYkURWci62KNmhJoaUIjiVi7U6fihK1Naq2ipUW4VqZzWPnH-lj00L9mfgW-Pveh969RrG2OWyqm8bJaSiIh9OSql66zJ6-Qf67-pPJiiPsA</recordid><startdate>20240821</startdate><enddate>20240821</enddate><creator>Wu, Jia</creator><creator>Jiang, Xiaoming</creator><creator>Zhong, Lisha</creator><creator>Zheng, Wei</creator><creator>Li, Xinwei</creator><creator>Lin, Jinzhao</creator><creator>Li, Zhangyong</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8184-1578</orcidid><orcidid>https://orcid.org/0000-0003-0713-9366</orcidid><orcidid>https://orcid.org/0000-0002-3918-069X</orcidid></search><sort><creationdate>20240821</creationdate><title>Linear diffusion noise boosted deep image prior for unsupervised sparse-view CT reconstruction</title><author>Wu, Jia ; Jiang, Xiaoming ; Zhong, Lisha ; Zheng, Wei ; Li, Xinwei ; Lin, Jinzhao ; Li, Zhangyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-35e8c2d8d537d13d8a96e532b4361cf3eddeb9373c480c4990f36bd1aa41a3c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>deep image prior (DIP)</topic><topic>Deep Learning</topic><topic>Diffusion</topic><topic>diffusion noise</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>multi-head attention</topic><topic>Signal-To-Noise Ratio</topic><topic>sparse-view</topic><topic>Tomography, X-Ray Computed</topic><topic>unsupervised CT reconstruction</topic><topic>Unsupervised Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jia</creatorcontrib><creatorcontrib>Jiang, Xiaoming</creatorcontrib><creatorcontrib>Zhong, Lisha</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Li, Xinwei</creatorcontrib><creatorcontrib>Lin, Jinzhao</creatorcontrib><creatorcontrib>Li, Zhangyong</creatorcontrib><collection>IOP_英国物理学会OA刊</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jia</au><au>Jiang, Xiaoming</au><au>Zhong, Lisha</au><au>Zheng, Wei</au><au>Li, Xinwei</au><au>Lin, Jinzhao</au><au>Li, Zhangyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear diffusion noise boosted deep image prior for unsupervised sparse-view CT reconstruction</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2024-08-21</date><risdate>2024</risdate><volume>69</volume><issue>16</issue><spage>165029</spage><pages>165029-</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Deep learning has markedly enhanced the performance of sparse-view computed tomography reconstruction. However, the dependence of these methods on supervised training using high-quality paired datasets, and the necessity for retraining under varied physical acquisition conditions, constrain their generalizability across new imaging contexts and settings. To overcome these limitations, we propose an unsupervised approach grounded in the deep image prior framework. Our approach advances beyond the conventional single noise level input by incorporating multi-level linear diffusion noise, significantly mitigating the risk of overfitting. Furthermore, we embed non-local self-similarity as a deep implicit prior within a self-attention network structure, improving the model's capability to identify and utilize repetitive patterns throughout the image. Additionally, leveraging imaging physics, gradient backpropagation is performed between the image domain and projection data space to optimize network weights. Evaluations with both simulated and clinical cases demonstrate our method's effective zero-shot adaptability across various projection views, highlighting its robustness and flexibility. Additionally, our approach effectively eliminates noise and streak artifacts while significantly restoring intricate image details. . Our method aims to overcome the limitations in current supervised deep learning-based sparse-view CT reconstruction, offering improved generalizability and adaptability without the need for extensive paired training data.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>39119998</pmid><doi>10.1088/1361-6560/ad69f7</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8184-1578</orcidid><orcidid>https://orcid.org/0000-0003-0713-9366</orcidid><orcidid>https://orcid.org/0000-0002-3918-069X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2024-08, Vol.69 (16), p.165029
issn 0031-9155
1361-6560
1361-6560
language eng
recordid cdi_proquest_miscellaneous_3090949765
source Institute of Physics Journals; MEDLINE
subjects deep image prior (DIP)
Deep Learning
Diffusion
diffusion noise
Humans
Image Processing, Computer-Assisted - methods
multi-head attention
Signal-To-Noise Ratio
sparse-view
Tomography, X-Ray Computed
unsupervised CT reconstruction
Unsupervised Machine Learning
title Linear diffusion noise boosted deep image prior for unsupervised sparse-view CT reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20diffusion%20noise%20boosted%20deep%20image%20prior%20for%20unsupervised%20sparse-view%20CT%20reconstruction&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Wu,%20Jia&rft.date=2024-08-21&rft.volume=69&rft.issue=16&rft.spage=165029&rft.pages=165029-&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ad69f7&rft_dat=%3Cproquest_cross%3E3090949765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090949765&rft_id=info:pmid/39119998&rfr_iscdi=true