In vivo MRI of hyperpolarized silicon‐29 nanoparticles

Purpose The objective of the present work was to test the feasibility of in vivo imaging of hyperpolarized 50‐nm silicon‐29 (29Si) nanoparticles. Methods Commercially available, crystalline 50‐nm nanoparticles were hyperpolarized using dynamic polarization transfer via the endogenous silicon oxide–s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2024-12, Vol.92 (6), p.2631-2640
Hauptverfasser: Kwiatkowski, Grzegorz, Witte, Gevin, Däpp, Alexander, Kocic, Jovana, Hattendorf, Bodo, Ernst, Matthias, Kozerke, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2640
container_issue 6
container_start_page 2631
container_title Magnetic resonance in medicine
container_volume 92
creator Kwiatkowski, Grzegorz
Witte, Gevin
Däpp, Alexander
Kocic, Jovana
Hattendorf, Bodo
Ernst, Matthias
Kozerke, Sebastian
description Purpose The objective of the present work was to test the feasibility of in vivo imaging of hyperpolarized 50‐nm silicon‐29 (29Si) nanoparticles. Methods Commercially available, crystalline 50‐nm nanoparticles were hyperpolarized using dynamic polarization transfer via the endogenous silicon oxide–silicon defects without the addition of exogenous radicals. Phantom experiments were used to quantify the effect of sample dissolution and various surface coating on T1 and T2 relaxation. The in vivo feasibility of detecting hyperpolarized silicon‐29 was tested following intraperitoneal, intragastric, or intratumoral injection in mice and compared with the results obtained with previously reported, large, micrometer‐size particles. The tissue clearance of SiNPs was quantified in various organs using inductively coupled plasma optical emission spectroscopy. Results In vivo images obtained after intragastric, intraperitoneal, and intratumoral injection compare favorably between small and large SiNPs. Improved distribution of small SiNPs was observed after intraperitoneal and intragastric injection as compared with micrometer‐size SiNPs. Sufficient clearance of nanometer‐size SiNPs using ex vivo tissue sample analysis was observed after 14 days following injection, indicating their safe use. Conclusion In vivo MRI of hyperpolarized small 50‐nm SiNPs is feasible with polarization levels and room‐temperature relaxation times comparable to large micrometer‐size particles.
doi_str_mv 10.1002/mrm.30244
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3090949313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090949313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2784-f8f21fbd6e25f3b0a7de707dbf7c19103b2bdb8f8e38848e58a404162a9d2973</originalsourceid><addsrcrecordid>eNp10M1Kw0AUhuFBFFurC29AAm50kfbMTzszSyn-FFqE0v0wSWYwJcnEmaZSV16C1-iVGE11Ibg6m4ePw4vQOYYhBiCj0pdDCoSxA9THY0JiMpbsEPWBM4gplqyHTkJYA4CUnB2jHpUYSz5hfSRmVbTNty5aLGeRs9HTrja-doX2-avJopAXeeqqj7d3IqNKV67WfpOnhQmn6MjqIpiz_R2g1d3tavoQzx_vZ9ObeZwSLlhshSXYJtnEkLGlCWieGQ48SyxPscRAE5JkibDCUCGYMGOhGTA8IVpmRHI6QFfdbO3dc2PCRpV5SE1R6Mq4JigKEiSTFNOWXv6ha9f4qn1OUYwBM8aEbNV1p1LvQvDGqtrnpfY7hUF91VRtTfVds7UX-8UmKU32K3_ytWDUgZe8MLv_l9RiuegmPwGoHH1W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110144489</pqid></control><display><type>article</type><title>In vivo MRI of hyperpolarized silicon‐29 nanoparticles</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kwiatkowski, Grzegorz ; Witte, Gevin ; Däpp, Alexander ; Kocic, Jovana ; Hattendorf, Bodo ; Ernst, Matthias ; Kozerke, Sebastian</creator><creatorcontrib>Kwiatkowski, Grzegorz ; Witte, Gevin ; Däpp, Alexander ; Kocic, Jovana ; Hattendorf, Bodo ; Ernst, Matthias ; Kozerke, Sebastian</creatorcontrib><description>Purpose The objective of the present work was to test the feasibility of in vivo imaging of hyperpolarized 50‐nm silicon‐29 (29Si) nanoparticles. Methods Commercially available, crystalline 50‐nm nanoparticles were hyperpolarized using dynamic polarization transfer via the endogenous silicon oxide–silicon defects without the addition of exogenous radicals. Phantom experiments were used to quantify the effect of sample dissolution and various surface coating on T1 and T2 relaxation. The in vivo feasibility of detecting hyperpolarized silicon‐29 was tested following intraperitoneal, intragastric, or intratumoral injection in mice and compared with the results obtained with previously reported, large, micrometer‐size particles. The tissue clearance of SiNPs was quantified in various organs using inductively coupled plasma optical emission spectroscopy. Results In vivo images obtained after intragastric, intraperitoneal, and intratumoral injection compare favorably between small and large SiNPs. Improved distribution of small SiNPs was observed after intraperitoneal and intragastric injection as compared with micrometer‐size SiNPs. Sufficient clearance of nanometer‐size SiNPs using ex vivo tissue sample analysis was observed after 14 days following injection, indicating their safe use. Conclusion In vivo MRI of hyperpolarized small 50‐nm SiNPs is feasible with polarization levels and room‐temperature relaxation times comparable to large micrometer‐size particles.</description><identifier>ISSN: 0740-3194</identifier><identifier>ISSN: 1522-2594</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.30244</identifier><identifier>PMID: 39119764</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Clearances ; Coating effects ; Crystal defects ; dynamic nuclear polarization ; Feasibility ; hyperpolarization ; In vivo methods and tests ; Inductively coupled plasma ; Injection ; Magnetic resonance imaging ; Micrometers ; Nanoparticles ; Optical emission spectroscopy ; Polarization ; Silicon ; Silicon oxide ; Silicon oxides ; silicon‐29 ; Spectroscopy</subject><ispartof>Magnetic resonance in medicine, 2024-12, Vol.92 (6), p.2631-2640</ispartof><rights>2024 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2784-f8f21fbd6e25f3b0a7de707dbf7c19103b2bdb8f8e38848e58a404162a9d2973</cites><orcidid>0000-0001-6783-3590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.30244$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.30244$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39119764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwiatkowski, Grzegorz</creatorcontrib><creatorcontrib>Witte, Gevin</creatorcontrib><creatorcontrib>Däpp, Alexander</creatorcontrib><creatorcontrib>Kocic, Jovana</creatorcontrib><creatorcontrib>Hattendorf, Bodo</creatorcontrib><creatorcontrib>Ernst, Matthias</creatorcontrib><creatorcontrib>Kozerke, Sebastian</creatorcontrib><title>In vivo MRI of hyperpolarized silicon‐29 nanoparticles</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose The objective of the present work was to test the feasibility of in vivo imaging of hyperpolarized 50‐nm silicon‐29 (29Si) nanoparticles. Methods Commercially available, crystalline 50‐nm nanoparticles were hyperpolarized using dynamic polarization transfer via the endogenous silicon oxide–silicon defects without the addition of exogenous radicals. Phantom experiments were used to quantify the effect of sample dissolution and various surface coating on T1 and T2 relaxation. The in vivo feasibility of detecting hyperpolarized silicon‐29 was tested following intraperitoneal, intragastric, or intratumoral injection in mice and compared with the results obtained with previously reported, large, micrometer‐size particles. The tissue clearance of SiNPs was quantified in various organs using inductively coupled plasma optical emission spectroscopy. Results In vivo images obtained after intragastric, intraperitoneal, and intratumoral injection compare favorably between small and large SiNPs. Improved distribution of small SiNPs was observed after intraperitoneal and intragastric injection as compared with micrometer‐size SiNPs. Sufficient clearance of nanometer‐size SiNPs using ex vivo tissue sample analysis was observed after 14 days following injection, indicating their safe use. Conclusion In vivo MRI of hyperpolarized small 50‐nm SiNPs is feasible with polarization levels and room‐temperature relaxation times comparable to large micrometer‐size particles.</description><subject>Clearances</subject><subject>Coating effects</subject><subject>Crystal defects</subject><subject>dynamic nuclear polarization</subject><subject>Feasibility</subject><subject>hyperpolarization</subject><subject>In vivo methods and tests</subject><subject>Inductively coupled plasma</subject><subject>Injection</subject><subject>Magnetic resonance imaging</subject><subject>Micrometers</subject><subject>Nanoparticles</subject><subject>Optical emission spectroscopy</subject><subject>Polarization</subject><subject>Silicon</subject><subject>Silicon oxide</subject><subject>Silicon oxides</subject><subject>silicon‐29</subject><subject>Spectroscopy</subject><issn>0740-3194</issn><issn>1522-2594</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10M1Kw0AUhuFBFFurC29AAm50kfbMTzszSyn-FFqE0v0wSWYwJcnEmaZSV16C1-iVGE11Ibg6m4ePw4vQOYYhBiCj0pdDCoSxA9THY0JiMpbsEPWBM4gplqyHTkJYA4CUnB2jHpUYSz5hfSRmVbTNty5aLGeRs9HTrja-doX2-avJopAXeeqqj7d3IqNKV67WfpOnhQmn6MjqIpiz_R2g1d3tavoQzx_vZ9ObeZwSLlhshSXYJtnEkLGlCWieGQ48SyxPscRAE5JkibDCUCGYMGOhGTA8IVpmRHI6QFfdbO3dc2PCRpV5SE1R6Mq4JigKEiSTFNOWXv6ha9f4qn1OUYwBM8aEbNV1p1LvQvDGqtrnpfY7hUF91VRtTfVds7UX-8UmKU32K3_ytWDUgZe8MLv_l9RiuegmPwGoHH1W</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Kwiatkowski, Grzegorz</creator><creator>Witte, Gevin</creator><creator>Däpp, Alexander</creator><creator>Kocic, Jovana</creator><creator>Hattendorf, Bodo</creator><creator>Ernst, Matthias</creator><creator>Kozerke, Sebastian</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6783-3590</orcidid></search><sort><creationdate>202412</creationdate><title>In vivo MRI of hyperpolarized silicon‐29 nanoparticles</title><author>Kwiatkowski, Grzegorz ; Witte, Gevin ; Däpp, Alexander ; Kocic, Jovana ; Hattendorf, Bodo ; Ernst, Matthias ; Kozerke, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2784-f8f21fbd6e25f3b0a7de707dbf7c19103b2bdb8f8e38848e58a404162a9d2973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Clearances</topic><topic>Coating effects</topic><topic>Crystal defects</topic><topic>dynamic nuclear polarization</topic><topic>Feasibility</topic><topic>hyperpolarization</topic><topic>In vivo methods and tests</topic><topic>Inductively coupled plasma</topic><topic>Injection</topic><topic>Magnetic resonance imaging</topic><topic>Micrometers</topic><topic>Nanoparticles</topic><topic>Optical emission spectroscopy</topic><topic>Polarization</topic><topic>Silicon</topic><topic>Silicon oxide</topic><topic>Silicon oxides</topic><topic>silicon‐29</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwiatkowski, Grzegorz</creatorcontrib><creatorcontrib>Witte, Gevin</creatorcontrib><creatorcontrib>Däpp, Alexander</creatorcontrib><creatorcontrib>Kocic, Jovana</creatorcontrib><creatorcontrib>Hattendorf, Bodo</creatorcontrib><creatorcontrib>Ernst, Matthias</creatorcontrib><creatorcontrib>Kozerke, Sebastian</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwiatkowski, Grzegorz</au><au>Witte, Gevin</au><au>Däpp, Alexander</au><au>Kocic, Jovana</au><au>Hattendorf, Bodo</au><au>Ernst, Matthias</au><au>Kozerke, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo MRI of hyperpolarized silicon‐29 nanoparticles</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2024-12</date><risdate>2024</risdate><volume>92</volume><issue>6</issue><spage>2631</spage><epage>2640</epage><pages>2631-2640</pages><issn>0740-3194</issn><issn>1522-2594</issn><eissn>1522-2594</eissn><abstract>Purpose The objective of the present work was to test the feasibility of in vivo imaging of hyperpolarized 50‐nm silicon‐29 (29Si) nanoparticles. Methods Commercially available, crystalline 50‐nm nanoparticles were hyperpolarized using dynamic polarization transfer via the endogenous silicon oxide–silicon defects without the addition of exogenous radicals. Phantom experiments were used to quantify the effect of sample dissolution and various surface coating on T1 and T2 relaxation. The in vivo feasibility of detecting hyperpolarized silicon‐29 was tested following intraperitoneal, intragastric, or intratumoral injection in mice and compared with the results obtained with previously reported, large, micrometer‐size particles. The tissue clearance of SiNPs was quantified in various organs using inductively coupled plasma optical emission spectroscopy. Results In vivo images obtained after intragastric, intraperitoneal, and intratumoral injection compare favorably between small and large SiNPs. Improved distribution of small SiNPs was observed after intraperitoneal and intragastric injection as compared with micrometer‐size SiNPs. Sufficient clearance of nanometer‐size SiNPs using ex vivo tissue sample analysis was observed after 14 days following injection, indicating their safe use. Conclusion In vivo MRI of hyperpolarized small 50‐nm SiNPs is feasible with polarization levels and room‐temperature relaxation times comparable to large micrometer‐size particles.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39119764</pmid><doi>10.1002/mrm.30244</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6783-3590</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2024-12, Vol.92 (6), p.2631-2640
issn 0740-3194
1522-2594
1522-2594
language eng
recordid cdi_proquest_miscellaneous_3090949313
source Wiley Online Library Journals Frontfile Complete
subjects Clearances
Coating effects
Crystal defects
dynamic nuclear polarization
Feasibility
hyperpolarization
In vivo methods and tests
Inductively coupled plasma
Injection
Magnetic resonance imaging
Micrometers
Nanoparticles
Optical emission spectroscopy
Polarization
Silicon
Silicon oxide
Silicon oxides
silicon‐29
Spectroscopy
title In vivo MRI of hyperpolarized silicon‐29 nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A23%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20MRI%20of%20hyperpolarized%20silicon%E2%80%9029%20nanoparticles&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Kwiatkowski,%20Grzegorz&rft.date=2024-12&rft.volume=92&rft.issue=6&rft.spage=2631&rft.epage=2640&rft.pages=2631-2640&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.30244&rft_dat=%3Cproquest_cross%3E3090949313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110144489&rft_id=info:pmid/39119764&rfr_iscdi=true