In vivo MRI of hyperpolarized silicon‐29 nanoparticles
Purpose The objective of the present work was to test the feasibility of in vivo imaging of hyperpolarized 50‐nm silicon‐29 (29Si) nanoparticles. Methods Commercially available, crystalline 50‐nm nanoparticles were hyperpolarized using dynamic polarization transfer via the endogenous silicon oxide–s...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2024-12, Vol.92 (6), p.2631-2640 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2640 |
---|---|
container_issue | 6 |
container_start_page | 2631 |
container_title | Magnetic resonance in medicine |
container_volume | 92 |
creator | Kwiatkowski, Grzegorz Witte, Gevin Däpp, Alexander Kocic, Jovana Hattendorf, Bodo Ernst, Matthias Kozerke, Sebastian |
description | Purpose
The objective of the present work was to test the feasibility of in vivo imaging of hyperpolarized 50‐nm silicon‐29 (29Si) nanoparticles.
Methods
Commercially available, crystalline 50‐nm nanoparticles were hyperpolarized using dynamic polarization transfer via the endogenous silicon oxide–silicon defects without the addition of exogenous radicals. Phantom experiments were used to quantify the effect of sample dissolution and various surface coating on T1 and T2 relaxation. The in vivo feasibility of detecting hyperpolarized silicon‐29 was tested following intraperitoneal, intragastric, or intratumoral injection in mice and compared with the results obtained with previously reported, large, micrometer‐size particles. The tissue clearance of SiNPs was quantified in various organs using inductively coupled plasma optical emission spectroscopy.
Results
In vivo images obtained after intragastric, intraperitoneal, and intratumoral injection compare favorably between small and large SiNPs. Improved distribution of small SiNPs was observed after intraperitoneal and intragastric injection as compared with micrometer‐size SiNPs. Sufficient clearance of nanometer‐size SiNPs using ex vivo tissue sample analysis was observed after 14 days following injection, indicating their safe use.
Conclusion
In vivo MRI of hyperpolarized small 50‐nm SiNPs is feasible with polarization levels and room‐temperature relaxation times comparable to large micrometer‐size particles. |
doi_str_mv | 10.1002/mrm.30244 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3090949313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090949313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2784-f8f21fbd6e25f3b0a7de707dbf7c19103b2bdb8f8e38848e58a404162a9d2973</originalsourceid><addsrcrecordid>eNp10M1Kw0AUhuFBFFurC29AAm50kfbMTzszSyn-FFqE0v0wSWYwJcnEmaZSV16C1-iVGE11Ibg6m4ePw4vQOYYhBiCj0pdDCoSxA9THY0JiMpbsEPWBM4gplqyHTkJYA4CUnB2jHpUYSz5hfSRmVbTNty5aLGeRs9HTrja-doX2-avJopAXeeqqj7d3IqNKV67WfpOnhQmn6MjqIpiz_R2g1d3tavoQzx_vZ9ObeZwSLlhshSXYJtnEkLGlCWieGQ48SyxPscRAE5JkibDCUCGYMGOhGTA8IVpmRHI6QFfdbO3dc2PCRpV5SE1R6Mq4JigKEiSTFNOWXv6ha9f4qn1OUYwBM8aEbNV1p1LvQvDGqtrnpfY7hUF91VRtTfVds7UX-8UmKU32K3_ytWDUgZe8MLv_l9RiuegmPwGoHH1W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110144489</pqid></control><display><type>article</type><title>In vivo MRI of hyperpolarized silicon‐29 nanoparticles</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kwiatkowski, Grzegorz ; Witte, Gevin ; Däpp, Alexander ; Kocic, Jovana ; Hattendorf, Bodo ; Ernst, Matthias ; Kozerke, Sebastian</creator><creatorcontrib>Kwiatkowski, Grzegorz ; Witte, Gevin ; Däpp, Alexander ; Kocic, Jovana ; Hattendorf, Bodo ; Ernst, Matthias ; Kozerke, Sebastian</creatorcontrib><description>Purpose
The objective of the present work was to test the feasibility of in vivo imaging of hyperpolarized 50‐nm silicon‐29 (29Si) nanoparticles.
Methods
Commercially available, crystalline 50‐nm nanoparticles were hyperpolarized using dynamic polarization transfer via the endogenous silicon oxide–silicon defects without the addition of exogenous radicals. Phantom experiments were used to quantify the effect of sample dissolution and various surface coating on T1 and T2 relaxation. The in vivo feasibility of detecting hyperpolarized silicon‐29 was tested following intraperitoneal, intragastric, or intratumoral injection in mice and compared with the results obtained with previously reported, large, micrometer‐size particles. The tissue clearance of SiNPs was quantified in various organs using inductively coupled plasma optical emission spectroscopy.
Results
In vivo images obtained after intragastric, intraperitoneal, and intratumoral injection compare favorably between small and large SiNPs. Improved distribution of small SiNPs was observed after intraperitoneal and intragastric injection as compared with micrometer‐size SiNPs. Sufficient clearance of nanometer‐size SiNPs using ex vivo tissue sample analysis was observed after 14 days following injection, indicating their safe use.
Conclusion
In vivo MRI of hyperpolarized small 50‐nm SiNPs is feasible with polarization levels and room‐temperature relaxation times comparable to large micrometer‐size particles.</description><identifier>ISSN: 0740-3194</identifier><identifier>ISSN: 1522-2594</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.30244</identifier><identifier>PMID: 39119764</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Clearances ; Coating effects ; Crystal defects ; dynamic nuclear polarization ; Feasibility ; hyperpolarization ; In vivo methods and tests ; Inductively coupled plasma ; Injection ; Magnetic resonance imaging ; Micrometers ; Nanoparticles ; Optical emission spectroscopy ; Polarization ; Silicon ; Silicon oxide ; Silicon oxides ; silicon‐29 ; Spectroscopy</subject><ispartof>Magnetic resonance in medicine, 2024-12, Vol.92 (6), p.2631-2640</ispartof><rights>2024 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2784-f8f21fbd6e25f3b0a7de707dbf7c19103b2bdb8f8e38848e58a404162a9d2973</cites><orcidid>0000-0001-6783-3590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.30244$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.30244$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39119764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwiatkowski, Grzegorz</creatorcontrib><creatorcontrib>Witte, Gevin</creatorcontrib><creatorcontrib>Däpp, Alexander</creatorcontrib><creatorcontrib>Kocic, Jovana</creatorcontrib><creatorcontrib>Hattendorf, Bodo</creatorcontrib><creatorcontrib>Ernst, Matthias</creatorcontrib><creatorcontrib>Kozerke, Sebastian</creatorcontrib><title>In vivo MRI of hyperpolarized silicon‐29 nanoparticles</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose
The objective of the present work was to test the feasibility of in vivo imaging of hyperpolarized 50‐nm silicon‐29 (29Si) nanoparticles.
Methods
Commercially available, crystalline 50‐nm nanoparticles were hyperpolarized using dynamic polarization transfer via the endogenous silicon oxide–silicon defects without the addition of exogenous radicals. Phantom experiments were used to quantify the effect of sample dissolution and various surface coating on T1 and T2 relaxation. The in vivo feasibility of detecting hyperpolarized silicon‐29 was tested following intraperitoneal, intragastric, or intratumoral injection in mice and compared with the results obtained with previously reported, large, micrometer‐size particles. The tissue clearance of SiNPs was quantified in various organs using inductively coupled plasma optical emission spectroscopy.
Results
In vivo images obtained after intragastric, intraperitoneal, and intratumoral injection compare favorably between small and large SiNPs. Improved distribution of small SiNPs was observed after intraperitoneal and intragastric injection as compared with micrometer‐size SiNPs. Sufficient clearance of nanometer‐size SiNPs using ex vivo tissue sample analysis was observed after 14 days following injection, indicating their safe use.
Conclusion
In vivo MRI of hyperpolarized small 50‐nm SiNPs is feasible with polarization levels and room‐temperature relaxation times comparable to large micrometer‐size particles.</description><subject>Clearances</subject><subject>Coating effects</subject><subject>Crystal defects</subject><subject>dynamic nuclear polarization</subject><subject>Feasibility</subject><subject>hyperpolarization</subject><subject>In vivo methods and tests</subject><subject>Inductively coupled plasma</subject><subject>Injection</subject><subject>Magnetic resonance imaging</subject><subject>Micrometers</subject><subject>Nanoparticles</subject><subject>Optical emission spectroscopy</subject><subject>Polarization</subject><subject>Silicon</subject><subject>Silicon oxide</subject><subject>Silicon oxides</subject><subject>silicon‐29</subject><subject>Spectroscopy</subject><issn>0740-3194</issn><issn>1522-2594</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10M1Kw0AUhuFBFFurC29AAm50kfbMTzszSyn-FFqE0v0wSWYwJcnEmaZSV16C1-iVGE11Ibg6m4ePw4vQOYYhBiCj0pdDCoSxA9THY0JiMpbsEPWBM4gplqyHTkJYA4CUnB2jHpUYSz5hfSRmVbTNty5aLGeRs9HTrja-doX2-avJopAXeeqqj7d3IqNKV67WfpOnhQmn6MjqIpiz_R2g1d3tavoQzx_vZ9ObeZwSLlhshSXYJtnEkLGlCWieGQ48SyxPscRAE5JkibDCUCGYMGOhGTA8IVpmRHI6QFfdbO3dc2PCRpV5SE1R6Mq4JigKEiSTFNOWXv6ha9f4qn1OUYwBM8aEbNV1p1LvQvDGqtrnpfY7hUF91VRtTfVds7UX-8UmKU32K3_ytWDUgZe8MLv_l9RiuegmPwGoHH1W</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Kwiatkowski, Grzegorz</creator><creator>Witte, Gevin</creator><creator>Däpp, Alexander</creator><creator>Kocic, Jovana</creator><creator>Hattendorf, Bodo</creator><creator>Ernst, Matthias</creator><creator>Kozerke, Sebastian</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6783-3590</orcidid></search><sort><creationdate>202412</creationdate><title>In vivo MRI of hyperpolarized silicon‐29 nanoparticles</title><author>Kwiatkowski, Grzegorz ; Witte, Gevin ; Däpp, Alexander ; Kocic, Jovana ; Hattendorf, Bodo ; Ernst, Matthias ; Kozerke, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2784-f8f21fbd6e25f3b0a7de707dbf7c19103b2bdb8f8e38848e58a404162a9d2973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Clearances</topic><topic>Coating effects</topic><topic>Crystal defects</topic><topic>dynamic nuclear polarization</topic><topic>Feasibility</topic><topic>hyperpolarization</topic><topic>In vivo methods and tests</topic><topic>Inductively coupled plasma</topic><topic>Injection</topic><topic>Magnetic resonance imaging</topic><topic>Micrometers</topic><topic>Nanoparticles</topic><topic>Optical emission spectroscopy</topic><topic>Polarization</topic><topic>Silicon</topic><topic>Silicon oxide</topic><topic>Silicon oxides</topic><topic>silicon‐29</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwiatkowski, Grzegorz</creatorcontrib><creatorcontrib>Witte, Gevin</creatorcontrib><creatorcontrib>Däpp, Alexander</creatorcontrib><creatorcontrib>Kocic, Jovana</creatorcontrib><creatorcontrib>Hattendorf, Bodo</creatorcontrib><creatorcontrib>Ernst, Matthias</creatorcontrib><creatorcontrib>Kozerke, Sebastian</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwiatkowski, Grzegorz</au><au>Witte, Gevin</au><au>Däpp, Alexander</au><au>Kocic, Jovana</au><au>Hattendorf, Bodo</au><au>Ernst, Matthias</au><au>Kozerke, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo MRI of hyperpolarized silicon‐29 nanoparticles</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2024-12</date><risdate>2024</risdate><volume>92</volume><issue>6</issue><spage>2631</spage><epage>2640</epage><pages>2631-2640</pages><issn>0740-3194</issn><issn>1522-2594</issn><eissn>1522-2594</eissn><abstract>Purpose
The objective of the present work was to test the feasibility of in vivo imaging of hyperpolarized 50‐nm silicon‐29 (29Si) nanoparticles.
Methods
Commercially available, crystalline 50‐nm nanoparticles were hyperpolarized using dynamic polarization transfer via the endogenous silicon oxide–silicon defects without the addition of exogenous radicals. Phantom experiments were used to quantify the effect of sample dissolution and various surface coating on T1 and T2 relaxation. The in vivo feasibility of detecting hyperpolarized silicon‐29 was tested following intraperitoneal, intragastric, or intratumoral injection in mice and compared with the results obtained with previously reported, large, micrometer‐size particles. The tissue clearance of SiNPs was quantified in various organs using inductively coupled plasma optical emission spectroscopy.
Results
In vivo images obtained after intragastric, intraperitoneal, and intratumoral injection compare favorably between small and large SiNPs. Improved distribution of small SiNPs was observed after intraperitoneal and intragastric injection as compared with micrometer‐size SiNPs. Sufficient clearance of nanometer‐size SiNPs using ex vivo tissue sample analysis was observed after 14 days following injection, indicating their safe use.
Conclusion
In vivo MRI of hyperpolarized small 50‐nm SiNPs is feasible with polarization levels and room‐temperature relaxation times comparable to large micrometer‐size particles.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39119764</pmid><doi>10.1002/mrm.30244</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6783-3590</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2024-12, Vol.92 (6), p.2631-2640 |
issn | 0740-3194 1522-2594 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_3090949313 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Clearances Coating effects Crystal defects dynamic nuclear polarization Feasibility hyperpolarization In vivo methods and tests Inductively coupled plasma Injection Magnetic resonance imaging Micrometers Nanoparticles Optical emission spectroscopy Polarization Silicon Silicon oxide Silicon oxides silicon‐29 Spectroscopy |
title | In vivo MRI of hyperpolarized silicon‐29 nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A23%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20MRI%20of%20hyperpolarized%20silicon%E2%80%9029%20nanoparticles&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Kwiatkowski,%20Grzegorz&rft.date=2024-12&rft.volume=92&rft.issue=6&rft.spage=2631&rft.epage=2640&rft.pages=2631-2640&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.30244&rft_dat=%3Cproquest_cross%3E3090949313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110144489&rft_id=info:pmid/39119764&rfr_iscdi=true |