Olivine‐Type Fe2GeX4 (X = S, Se, and Te): A Novel Class of Anode Materials for Exceptional Sodium Storage Performance

The introduction of abundant metals to form ternary germanium‐based chalcogenides can dilute the high price and effectively buffer the volume variation of germanium. Herein, olivine‐structured Fe2GeX4 (X = S, Se, and Te) are synthesized by a chemical vapor transport method to compare their sodium st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-09, Vol.36 (39), p.e2407492-n/a
Hauptverfasser: Wang, Xinyu, Du, Xin, Luo, Jiangli, Li, Longhui, Tan, Lei, Dong, Weiwei, Li, Dan, Guo, Zaiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 39
container_start_page e2407492
container_title Advanced materials (Weinheim)
container_volume 36
creator Wang, Xinyu
Du, Xin
Luo, Jiangli
Li, Longhui
Tan, Lei
Dong, Weiwei
Li, Dan
Guo, Zaiping
description The introduction of abundant metals to form ternary germanium‐based chalcogenides can dilute the high price and effectively buffer the volume variation of germanium. Herein, olivine‐structured Fe2GeX4 (X = S, Se, and Te) are synthesized by a chemical vapor transport method to compare their sodium storage properties. A series of in situ and ex situ measurements validate a combined intercalation‐conversion‐alloying reaction mechanism of Fe2GeX4. Fe2GeS4 exhibits a high capacity of 477.9 mA h g−1 after 2660 cycles at 8 A g−1, and excellent rate capability. Furthermore, the Na3V2(PO4)3//Fe2GeS4 full cell delivers a capacity of 375.5 mA h g−1 at 0.5 A g−1, which is more than three times that of commercial hard carbon, with a high initial Coulombic efficiency of 93.23%. Capacity‐contribution and kinetic analyses reveal that the alloying reaction significantly contributes to the overall capacity and serves as the rate‐determining step within the reaction for both Fe2GeS4 and Fe2GeSe4. Upon reaching a specific cycle threshold, the assessment of the kinetic properties of Fe2GeX4 primarily relies on the ion diffusion process that occurs during charging. This work demonstrates that Fe2GeX4 possesses promising practical potential to outperform hard carbon, offering valuable insights and impetus for the advancement of ternary germanium‐based anodes. The investigation in Na+ storage properties in Fe2GeX4 (X = S, Se, and Te) reveals their superior electrochemical performance and a combined intercalation‐conversion‐alloying reaction pathway, with the alloying process dominating capacity and determining the rate of Fe2GeS4 and Fe2GeSe4. Theoretical calculations demonstrate that Fe2GeS4 preferentially adsorbs Na⁺ onto coexistence regions of Fe‐S octahedral and Ge‐S tetrahedral. Conversely, Fe2GeSe4 and Fe2GeTe4 exhibit homogeneous adsorption.
doi_str_mv 10.1002/adma.202407492
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3090947284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110206073</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1962-8653c597f02650157bc8f5a20f2a33e30458d928e2d13e6683887a891ebdc0103</originalsourceid><addsrcrecordid>eNpd0U1Lw0AQBuBFFKwfV88DXhSMzu5mN7uCh1A_wS9ohd7CNplIJMnGpFV78yf4G_0lplQ8eBoGnndgeBnb43jMEcWJyyp3LFCEGIVWrLEBV4IHIVq1zgZopQqsDs0m2-q6F0S0GvWAvT-UxVtR0_fn13jREFySuKJJCAcTOIPREYzoCFydwZgOTyGGe_9GJQxL13Xgc4hrnxHcuRm1hSs7yH0LFx8pNbPC166Ekc-KeQWjmW_dM8Ejtb2oXJ3SDtvI-wTt_s5t9nR5MR5eB7cPVzfD-DZouNUiMFrJVNkoR6EVchVNU5MrJzAXTkqSGCqTWWFIZFyS1kYaEzljOU2zFDnKbXawutu0_nVO3Sypii6lsnQ1-XmXSLRow0iYsKf7_-iLn7f9G73iHAVqjGSv7Eq9FyUtkqYtKtcuEo7JsoRkWULyV0ISn9_Ff5v8AdKbegk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110206073</pqid></control><display><type>article</type><title>Olivine‐Type Fe2GeX4 (X = S, Se, and Te): A Novel Class of Anode Materials for Exceptional Sodium Storage Performance</title><source>Wiley Online Library All Journals</source><creator>Wang, Xinyu ; Du, Xin ; Luo, Jiangli ; Li, Longhui ; Tan, Lei ; Dong, Weiwei ; Li, Dan ; Guo, Zaiping</creator><creatorcontrib>Wang, Xinyu ; Du, Xin ; Luo, Jiangli ; Li, Longhui ; Tan, Lei ; Dong, Weiwei ; Li, Dan ; Guo, Zaiping</creatorcontrib><description>The introduction of abundant metals to form ternary germanium‐based chalcogenides can dilute the high price and effectively buffer the volume variation of germanium. Herein, olivine‐structured Fe2GeX4 (X = S, Se, and Te) are synthesized by a chemical vapor transport method to compare their sodium storage properties. A series of in situ and ex situ measurements validate a combined intercalation‐conversion‐alloying reaction mechanism of Fe2GeX4. Fe2GeS4 exhibits a high capacity of 477.9 mA h g−1 after 2660 cycles at 8 A g−1, and excellent rate capability. Furthermore, the Na3V2(PO4)3//Fe2GeS4 full cell delivers a capacity of 375.5 mA h g−1 at 0.5 A g−1, which is more than three times that of commercial hard carbon, with a high initial Coulombic efficiency of 93.23%. Capacity‐contribution and kinetic analyses reveal that the alloying reaction significantly contributes to the overall capacity and serves as the rate‐determining step within the reaction for both Fe2GeS4 and Fe2GeSe4. Upon reaching a specific cycle threshold, the assessment of the kinetic properties of Fe2GeX4 primarily relies on the ion diffusion process that occurs during charging. This work demonstrates that Fe2GeX4 possesses promising practical potential to outperform hard carbon, offering valuable insights and impetus for the advancement of ternary germanium‐based anodes. The investigation in Na+ storage properties in Fe2GeX4 (X = S, Se, and Te) reveals their superior electrochemical performance and a combined intercalation‐conversion‐alloying reaction pathway, with the alloying process dominating capacity and determining the rate of Fe2GeS4 and Fe2GeSe4. Theoretical calculations demonstrate that Fe2GeS4 preferentially adsorbs Na⁺ onto coexistence regions of Fe‐S octahedral and Ge‐S tetrahedral. Conversely, Fe2GeSe4 and Fe2GeTe4 exhibit homogeneous adsorption.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202407492</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alloying ; Anodes ; Carbon ; Chemical synthesis ; Diffusion rate ; Electrode materials ; Fe2GeX4 ; Germanium ; Ion diffusion ; Olivine ; olivine structure ; Reaction mechanisms ; Selenium ; Sodium ; sodium‐ion batteries ; Tellurium</subject><ispartof>Advanced materials (Weinheim), 2024-09, Vol.36 (39), p.e2407492-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202407492$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202407492$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Du, Xin</creatorcontrib><creatorcontrib>Luo, Jiangli</creatorcontrib><creatorcontrib>Li, Longhui</creatorcontrib><creatorcontrib>Tan, Lei</creatorcontrib><creatorcontrib>Dong, Weiwei</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Guo, Zaiping</creatorcontrib><title>Olivine‐Type Fe2GeX4 (X = S, Se, and Te): A Novel Class of Anode Materials for Exceptional Sodium Storage Performance</title><title>Advanced materials (Weinheim)</title><description>The introduction of abundant metals to form ternary germanium‐based chalcogenides can dilute the high price and effectively buffer the volume variation of germanium. Herein, olivine‐structured Fe2GeX4 (X = S, Se, and Te) are synthesized by a chemical vapor transport method to compare their sodium storage properties. A series of in situ and ex situ measurements validate a combined intercalation‐conversion‐alloying reaction mechanism of Fe2GeX4. Fe2GeS4 exhibits a high capacity of 477.9 mA h g−1 after 2660 cycles at 8 A g−1, and excellent rate capability. Furthermore, the Na3V2(PO4)3//Fe2GeS4 full cell delivers a capacity of 375.5 mA h g−1 at 0.5 A g−1, which is more than three times that of commercial hard carbon, with a high initial Coulombic efficiency of 93.23%. Capacity‐contribution and kinetic analyses reveal that the alloying reaction significantly contributes to the overall capacity and serves as the rate‐determining step within the reaction for both Fe2GeS4 and Fe2GeSe4. Upon reaching a specific cycle threshold, the assessment of the kinetic properties of Fe2GeX4 primarily relies on the ion diffusion process that occurs during charging. This work demonstrates that Fe2GeX4 possesses promising practical potential to outperform hard carbon, offering valuable insights and impetus for the advancement of ternary germanium‐based anodes. The investigation in Na+ storage properties in Fe2GeX4 (X = S, Se, and Te) reveals their superior electrochemical performance and a combined intercalation‐conversion‐alloying reaction pathway, with the alloying process dominating capacity and determining the rate of Fe2GeS4 and Fe2GeSe4. Theoretical calculations demonstrate that Fe2GeS4 preferentially adsorbs Na⁺ onto coexistence regions of Fe‐S octahedral and Ge‐S tetrahedral. Conversely, Fe2GeSe4 and Fe2GeTe4 exhibit homogeneous adsorption.</description><subject>Alloying</subject><subject>Anodes</subject><subject>Carbon</subject><subject>Chemical synthesis</subject><subject>Diffusion rate</subject><subject>Electrode materials</subject><subject>Fe2GeX4</subject><subject>Germanium</subject><subject>Ion diffusion</subject><subject>Olivine</subject><subject>olivine structure</subject><subject>Reaction mechanisms</subject><subject>Selenium</subject><subject>Sodium</subject><subject>sodium‐ion batteries</subject><subject>Tellurium</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0U1Lw0AQBuBFFKwfV88DXhSMzu5mN7uCh1A_wS9ohd7CNplIJMnGpFV78yf4G_0lplQ8eBoGnndgeBnb43jMEcWJyyp3LFCEGIVWrLEBV4IHIVq1zgZopQqsDs0m2-q6F0S0GvWAvT-UxVtR0_fn13jREFySuKJJCAcTOIPREYzoCFydwZgOTyGGe_9GJQxL13Xgc4hrnxHcuRm1hSs7yH0LFx8pNbPC166Ekc-KeQWjmW_dM8Ejtb2oXJ3SDtvI-wTt_s5t9nR5MR5eB7cPVzfD-DZouNUiMFrJVNkoR6EVchVNU5MrJzAXTkqSGCqTWWFIZFyS1kYaEzljOU2zFDnKbXawutu0_nVO3Sypii6lsnQ1-XmXSLRow0iYsKf7_-iLn7f9G73iHAVqjGSv7Eq9FyUtkqYtKtcuEo7JsoRkWULyV0ISn9_Ff5v8AdKbegk</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Wang, Xinyu</creator><creator>Du, Xin</creator><creator>Luo, Jiangli</creator><creator>Li, Longhui</creator><creator>Tan, Lei</creator><creator>Dong, Weiwei</creator><creator>Li, Dan</creator><creator>Guo, Zaiping</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>20240901</creationdate><title>Olivine‐Type Fe2GeX4 (X = S, Se, and Te): A Novel Class of Anode Materials for Exceptional Sodium Storage Performance</title><author>Wang, Xinyu ; Du, Xin ; Luo, Jiangli ; Li, Longhui ; Tan, Lei ; Dong, Weiwei ; Li, Dan ; Guo, Zaiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1962-8653c597f02650157bc8f5a20f2a33e30458d928e2d13e6683887a891ebdc0103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloying</topic><topic>Anodes</topic><topic>Carbon</topic><topic>Chemical synthesis</topic><topic>Diffusion rate</topic><topic>Electrode materials</topic><topic>Fe2GeX4</topic><topic>Germanium</topic><topic>Ion diffusion</topic><topic>Olivine</topic><topic>olivine structure</topic><topic>Reaction mechanisms</topic><topic>Selenium</topic><topic>Sodium</topic><topic>sodium‐ion batteries</topic><topic>Tellurium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Du, Xin</creatorcontrib><creatorcontrib>Luo, Jiangli</creatorcontrib><creatorcontrib>Li, Longhui</creatorcontrib><creatorcontrib>Tan, Lei</creatorcontrib><creatorcontrib>Dong, Weiwei</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Guo, Zaiping</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xinyu</au><au>Du, Xin</au><au>Luo, Jiangli</au><au>Li, Longhui</au><au>Tan, Lei</au><au>Dong, Weiwei</au><au>Li, Dan</au><au>Guo, Zaiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Olivine‐Type Fe2GeX4 (X = S, Se, and Te): A Novel Class of Anode Materials for Exceptional Sodium Storage Performance</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>36</volume><issue>39</issue><spage>e2407492</spage><epage>n/a</epage><pages>e2407492-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>The introduction of abundant metals to form ternary germanium‐based chalcogenides can dilute the high price and effectively buffer the volume variation of germanium. Herein, olivine‐structured Fe2GeX4 (X = S, Se, and Te) are synthesized by a chemical vapor transport method to compare their sodium storage properties. A series of in situ and ex situ measurements validate a combined intercalation‐conversion‐alloying reaction mechanism of Fe2GeX4. Fe2GeS4 exhibits a high capacity of 477.9 mA h g−1 after 2660 cycles at 8 A g−1, and excellent rate capability. Furthermore, the Na3V2(PO4)3//Fe2GeS4 full cell delivers a capacity of 375.5 mA h g−1 at 0.5 A g−1, which is more than three times that of commercial hard carbon, with a high initial Coulombic efficiency of 93.23%. Capacity‐contribution and kinetic analyses reveal that the alloying reaction significantly contributes to the overall capacity and serves as the rate‐determining step within the reaction for both Fe2GeS4 and Fe2GeSe4. Upon reaching a specific cycle threshold, the assessment of the kinetic properties of Fe2GeX4 primarily relies on the ion diffusion process that occurs during charging. This work demonstrates that Fe2GeX4 possesses promising practical potential to outperform hard carbon, offering valuable insights and impetus for the advancement of ternary germanium‐based anodes. The investigation in Na+ storage properties in Fe2GeX4 (X = S, Se, and Te) reveals their superior electrochemical performance and a combined intercalation‐conversion‐alloying reaction pathway, with the alloying process dominating capacity and determining the rate of Fe2GeS4 and Fe2GeSe4. Theoretical calculations demonstrate that Fe2GeS4 preferentially adsorbs Na⁺ onto coexistence regions of Fe‐S octahedral and Ge‐S tetrahedral. Conversely, Fe2GeSe4 and Fe2GeTe4 exhibit homogeneous adsorption.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202407492</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-09, Vol.36 (39), p.e2407492-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3090947284
source Wiley Online Library All Journals
subjects Alloying
Anodes
Carbon
Chemical synthesis
Diffusion rate
Electrode materials
Fe2GeX4
Germanium
Ion diffusion
Olivine
olivine structure
Reaction mechanisms
Selenium
Sodium
sodium‐ion batteries
Tellurium
title Olivine‐Type Fe2GeX4 (X = S, Se, and Te): A Novel Class of Anode Materials for Exceptional Sodium Storage Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Olivine%E2%80%90Type%20Fe2GeX4%20(X%20=%20S,%20Se,%20and%20Te):%20A%20Novel%20Class%20of%20Anode%20Materials%20for%20Exceptional%20Sodium%20Storage%20Performance&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Xinyu&rft.date=2024-09-01&rft.volume=36&rft.issue=39&rft.spage=e2407492&rft.epage=n/a&rft.pages=e2407492-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202407492&rft_dat=%3Cproquest_wiley%3E3110206073%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110206073&rft_id=info:pmid/&rfr_iscdi=true